Investment Guarantees; Modelling and Risk Management for Equity-Linked Life Insurance

Errata

Here are some errata for my book "Investment Guarantees; Modelling and Risk Management for Equity-Linked Life Insurance" (Wiley, 2003). If you find any more, please email me at mrhardy@uwaterloo.ca.

- Page 32 In equation (2.19) and the following RSLN-2 model development section, we assume that $S_0 = 1.0$.
- Page 35 In Equation (2.31) there should be an x in the denominator, giving a correct equation:

$$f_{S_n}(x) = \sum_{r=0}^n \frac{1}{\sigma^*(r) x} \phi\left(\frac{\log x - \mu^*(r)}{\sigma^*(r)}\right) p_n(r)$$
 (1)

- Page 38 In the characteristic function in Equation (2.33), the left hand side should be $\phi(t)$, not $\phi(X)$.
- Page 38 The stochastic volatility model described is not a sensible model, since the volatility just keeps increasing if a > 0 (and may become negative if a < 0. A better model might be that described in Campbell, Lo and McKinlay (1996), where the log return y_t is modelled as:

$$y_t = \mu + \sigma_t \, \epsilon_t \quad \text{and} \quad \sigma_t = e^{\alpha_t/2}$$
 (2)

where
$$\alpha_t = \phi \alpha_{t-1} + \varepsilon_t^{\sigma}$$
 (3)

where ϵ_t and ϵ_t^{σ} are serially independent and independent of each other, and are both Normally distributed with zero mean.

Page 74 The table 4.4 is calculated using more accurate $p_{1,2}$ and $p_{2,1}$ parameters. Using the rounded values of $p_{1,2} = 0.037$ and $p_{2,1} = 0.21$, as given in the text, gives a distribution for R_{12} :

r	$\Pr[R_{12} = r]$	r	$\Pr[R_{12} = r]$
0	0.011205	7	0.040641
1	0.007352	8	0.050770
2	0.010314	9	0.062445
3	0.014111	10	0.075643
4	0.018894	11	0.090206
5	0.024815	12	0.561580
6	0.032020		

Page 76 In line 5 the term 1.645 has been omitted; it should read:

"So, if $\tilde{p}-1.645\sqrt{\frac{\tilde{p}(1-\tilde{p})}{m}}$ is greater than the required probability..."

Page 98 π_1 is wrongly defined, it should be

$$\pi_1 = \frac{p_{2,1}}{p_{1,2} + p_{2,1}}$$

Page 100 In equation (6.9) the exponent for (1-m) should be t-1, so the correct formula for M-t is

$$M_t = m_c F_{0-} \frac{S_t (1-m)^{t-1}}{S_0}$$

Page 100 In equation (6.11) the sign should be + not -.

Page 101 In equation (6.14) the power for the first (1-m) term should be t, not t-1.

Page 102 Under Table 6.1, the net present value of the future liability in this case should be -0.055, not -0.145.

Page 103 In the right hand side of equations (6.15) to (6.17) the second 1.0 should not be there; the second term in the argument of the max function should be $\frac{F_{n_r}}{F_{n_r}}$.

$$G_1 = \max(G_0, F_{n_1^-}) = G_0 \max\left(1.0, \frac{F_{n_1^-}}{F_{n_0^+}}\right)$$

$$G_2 = \max(G_1, F_{n_2^-}) = G_0 \prod_{r=1}^2 \max\left(1.0, \frac{F_{n_r^-}}{F_{n_{r-1}^+}}\right)$$

:

$$G_k = \max(G_{k-1}, F_{n_k^-}) = G_0 \prod_{r=1}^k \max\left(1.0, \frac{F_{n_r^-}}{F_{n_{r-1}^+}}\right)$$

Page 136 The numbers in Table 8.1 are incorrect. The correct table is:

Guarantee	Term to maturity T				
% of fund	5	10	20		
60	0.549	0.604	0.217		
80	2.333	1.696	0.473		
100	5.866	3.423	0.826		
120	11.099	5.725	1.262		
$_Tp_{50}^{ au}$	0.65520	0.42247	0.15972		

Example hedge costs, % of fund at the valuation date, for a GMMB, with allowance for policyholder exits following Appendix A.

Page 137 The exponent T in equations (8.7) and (8.8) should be t.

Page 137 The numbers in Table 8.2 are incorrect. The correct table is:

Guarantee	Term to maturity T			
% of fund	5	10	20	
60	0.0062	0.0306	0.0947	
80	0.0392	0.1189	0.2743	
100	0.1392	0.3145	0.6033	
120	0.3324	0.6411	1.1006	

• On page 140 the first term in the equation for

$$S_0 \frac{\partial H(0, t_3)}{\partial S_0}$$

is missing the $(1-m)^{t_1}$ term. The correct equation should be

$$S_0 \frac{\partial H(0, t_3)}{\partial S_0} = \left(-S_0 (1 - m)^{t_1} \Phi(-d_1(t_1)) + S_0 (1 - m)^{t_1} \right) \times \left\{ 1 + P(t_2 - t_1) (1 + P(t_3 - t_2)) + (1 - m)^{t_2 - t_1} P(t_3 - t_2) \right\}$$

$$-S_0 (1 - m)^{t_1}$$

Thanks to Frank Bensics, Nick Mocciolo, Guixin Xu, Josephine Marks, Jean-Yves Rioux, Alan Chang, Fang Yi, Larry Gorski.