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A Predictive Analytics Framework 
A Reusable Workflow for Experience Analysis 

Executive Summary 
Predictive modeling is a powerful tool that leverages statistical techniques to forecast outcomes. It is 
widely used across various industries, from healthcare to finance, to make informed decisions based on 
historical data. This tutorial aims to introduce a framework for developing predictive models in the context 
of actuarial experience studies. To ground this framework within the context of real actuarial problems, we 
will also specifically look to understand and model the differences in mortality by product (whole life, term, 
etc.) With the modeling approach, we can see that. 

• The relative spread of preferred mortality differs by product. 
o For two-class preferred systems, the residual standard mortality is much higher than 

preferred for term than for other products. 
o The spread for UL/VL/ULSG/VLSG for four-class preferred systems is much wider than for 

other products. 
• There are divergences in the spread of face amount factors for xL, Perm, and Term, with xL 

narrowing relative to Term. 
• The issue age slope appears to be steeper for Term than Perm and xL under age 65. However, 

differences emerge above issue age 65, with the slope for Perm steepening relative to xL. 
• There are differences among the products in durations 1 and 2. 
• Since issue years 1990-1999, there has been a small but steady increase in relative mortality for xL 

versus Term, with xL now approaching Term. 
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Section 1: Data 
For what follows, we used a filtered and summarized subset of the Society of Actuaries Research Institute’s 
Individual Life Experience Committee (ILEC) mortality data. Columns included in the extract were: 

• Number of Preferred Classes 
• Preferred Class 
• Smoker Status 
• Face Amount Band 
• Observation_Year 
• Duration 
• Issue Age 
• Insurance Plan 
• Anticipated Level Term Period 
• Issue Year 
• Sex 
• Death Count 
• Death Claim Amount 
• Tabular Expected Mortality by Count - 2015VBT 
• Tabular Expected Mortality by Amount - 2015VBT 

The data were filtered as: 

• Issue ages 18 and greater 
• Durations 25 and less 
• Experience years 2013-2017 

and then grouped or combined as: 

• Underwriting: concatenation of smoker status, number of preferred classes, and preferred class, 
in that order 

• Duration: 1, 2, 3, 4-5, 6-15, 16-25 
• Issue Age: 18-24, 25-34, 35-44, 45-54, 55-64, 65-74, 75-84, 85-99 
• Issue Years: 1900-1989, 1990-1999, 2000-2009, 2010+ 
• Insurance Plan: UL, ULSG, VL, VLSG collapsed into category “xL” 
• Face Amount Band: face amounts under $50,000 grouped into a single category, face amounts $1 

million and greater grouped into a single category 

The intent of this heavy grouping and summarization was to enable running this document with modest 
computing resources. The source data can be replaced with a similarly constructed dataset with more 
finely grouped variables. 

The code to generate these files can be found in the datafiles subfolder. It relies on an unpublished version 
of the ILEC dataset, which has been restructured using the Arrow framework into a collection of Parquet 
files. A knowledgeable reader should be able to adapt the code to whatever environment in which they 
keep their own copy of the ILEC dataset. 
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Section 2: Machine Learning in Mortality Studies 
Experience studies are a primary tool that actuaries use to quantify and understand historical experience. It 
is a natural next step to apply statistical techniques to experience studies to discover new and relevant 
insights. There are multiple advantages to this approach: 

• Allows the actuary to avoid cumbersome and potentially misleading univariate analysis 
• Allows the actuary to appropriately consider credibility and unlock all the credibility inherent in 

the data 
• Makes it easier to discover and appropriately adjust for variable interactions 
• Enables the actuary to statistically control for the different sources of variation in any given cell of 

a mortality study. 

2.1 PROBLEM STATEMENT 
One question of interest to actuaries is why different products exhibit different mortality outcomes. Even 
though they can be difficult to separately identify and quantify, it is known that underwriting, target 
market, policyholder behavior, and socioeconomic factors, among others, have a direct bearing on 
mortality outcomes. With a statistical or machine learning model, we have a possible solution to account 
for the impact of these variables. For this project, the key question we are trying to answer is how mortality 
varies by product in the Individual Life Experience Committee dataset. In the simplified dataset that is used 
herein, the product categories are Term, Perm, UL/VL, and Other. To understand the differences in 
mortality by product, we will construct machine learning models to predict the mortality outcomes and 
analyze the results for relevant insights. 

2.2 METHODOLOGY 
The framework will guide the process of code setup, model creation, preprocessing, and validation. It will 
also address common challenges often encountered such as: incorporating nonlinear relationships, 
determining interactions, dealing with underfitting and overfitting (bias-variance trade-off), and model 
interpretability. The goal of this project is to provide useful techniques, code, and ideas to actuaries to 
guide future analysis of mortality studies. 

There are several common key steps in any modeling process: data preprocessing, data exploration, model 
selection, model validation, and model interpretation. Much more can be written on these topics than we 
have the space to explore, and we aim to address the key considerations as they pertain to experience 
studies. 

2.3 MODELING APPROACHES 
When applying statistics and machine learning to experience studies, there are multiple different modeling 
approaches one might take. We will focus our attention on the most common approaches used: 
generalized linear models (GLMs), generalized linear models with penalization (also known as elastic net 
GLMs), and gradient boosting machines (GBMs or GBDTs). Many other approaches or variations on these 
approaches are also reasonable. 

2.3.1 GENERALIZED LINEAR MODELS (GLM) 
Generalized linear models have the most history of the methods that we will examine and, in some sense, 
are the simplest. One of the benefits of GLMs is that they allow statistical hypothesis testing. For instance, 
individual model coefficients can be statistically tested, and various statistical tests can be performed to 
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validate results and compare models. The results of GLMs are also relatively simple to interpret. However, 
GLMs have a few disadvantages: due to their relative simplicity, they have lower predictive power than 
other methods. To get the best performance out of a GLM, additional effort is needed to capture nonlinear 
relationships and interactions. Ultimately, this can make them more time-intensive than other 
methodologies. 

GLMs can be extended into regularized GLMs, such as LASSO or Ridge, which modifies the objective used to 
fit the model. This regularization term offers several advantages, disadvantages, and changes to the 
modeling process. First, the addition of penalization makes confidence intervals and hypothesis testing 
infeasible. Instead of using hypothesis testing on coefficients and likelihood ratio tests to evaluate relative 
fitness of models, we apply a machine learning paradigm by optimizing our model using cross-validation. 
Fortunately, a regularized GLM still maintains the nice interpretability of a linear model, and it can increase 
the overall predictive accuracy of the model. Additionally, by using a LASSO penalty, it can perform 
automatic feature selection. 

2.3.2 GRADIENT-BOOSTED DECISION TREES (GBDT) 
Gradient boosting decision trees are an ensemble of decision trees generated in a stage-wise fashion. Each 
decision tree is recursively trained on the residuals of the previous tree. The first tree is a decision tree on 
the outcome, the second the residuals on that, and so on. In this way, the model is continually refocusing 
on where its predictions are weakest. Popular frameworks for gradient boosting decision trees include 
LightGBM, CatBoost, and XGBoost. This model is one of the most effective methods for classification and 
regression for tabular data. 

Gradient boosting machines (applied here with LightGBM) have become the go-to approach in many 
tabular machine learning tasks due to their very high accuracy, ease of use, and ability to seamlessly 
discover important interactions. However, they can also be the most complex to interpret. To aid in 
interpretation, we will discuss the use of SHAP values, which is a popular method of interpretation. 

2.4 MODEL EXPLANATION 

2.4.1 ORDERED LORENZ PLOT AND GINI 
An ordered Lorenz curve and the associated Gini coefficient measure the ability of a model to stratify risk. 
An ordered Lorenz curve is created using the model prediction as an index. Using this index, we graph the 
cumulative percentage of claims versus the cumulative percentage of exposure. The more bowed this line 
is, the better the model is able to predict the outcome. The Gini Index measures the difference between 
this line and perfect equality. The more your model is able to predict risk, the more unequal the 
distribution of claims is between the model prediction and, thus, the larger the Gini coefficient. 

2.4.2 LIFT PLOT 
There are several different varieties of lift plots used in connection with machine learning. These plots are 
used to help visually understand the risk stratification and accuracy of a model. As presented here, lift plots 
sort the model predictions into deciles based upon the predicted value. For each decile, the model’s 
average prediction for that cell is graphed versus the value seen empirically in the data. The more these 
two values are in agreement, the better the model is performing. 
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2.4.3 SHAP 
SHAP values are a method of model interpretation in machine learning and originally come from Shapley 
values in economics. SHAP values measure the impact each feature has on the prediction for a particular 
instance. This numeric score indicates how much each feature contributed to the prediction in terms of 
sign and magnitude. 

2.4.4 FEATURE IMPORTANCE 
Feature importance is a global measure of how much a variable contributes to the predictions of a target 
variable within a model. This can be helpful in interpreting a model to understand the key drivers in 
aggregate. However, unlike SHAP values, feature importance does not help you interpret individual 
predictions. Feature importance is usually presented in terms of percent contribution. When done so, a 
feature importance of 20% for a feature would imply that 20% of the overall reduction in prediction error is 
attributable to that particular feature. There are multiple ways of measuring feature importance. One of 
the simplest and most intuitive is permutation feature importance. Using this method, you scramble a 
particular feature so that it is no longer useful and measure the percent difference in model performance 
before and after this change. The change in error would be the importance. 

The reader should be cautioned that a low relative importance does not imply lack of significance or of 
predictive value. For example, gender is a well-known predictor of mortality. The variation explainable by 
other factors of the data can greatly exceed the variation arising from gender, and interactions with other 
variables like age can further rob gender of importance attributed to it. The effect then is to push gender 
down the feature importance list. 

2.4.5 GOODNESS-OF-FIT 
No matter how well a model may behave on measures of feature importance, lift, Lorenz and Gini indices, 
mean square error, deviance, and so on, it is nonetheless important to check goodness-of-fit. Goodness-of-
fit checks allow us to see how well a model reproduces the phenomena of interest. For our purposes, this is 
the same as checking ratios of actual claims to model predicted claims. In each model section, there are 
univariate and bivariate goodness-of-fit tables. Ideally, we should see 100% for all entries. For the GLM 
model and the univariate goodness-of-fit checks, we will see this throughout the tables of goodness-of-fit, 
as a non-penalized GLM will reproduce the margins for any included categorical variable or interaction of 
categorical variables. For space reasons, we omit a test for ratios significantly different from 100%. 
However, qualitatively, ratios far from 100%, perhaps +/- 5% or +/- 10%, should be deemed as evidence of 
poor fit for that cell. 
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Section 3: Framework Preparation 
Before getting to the core data analysis task, we need to first prepare the R environment by configuring 
display and model options, loading necessary libraries. Then, we load the data and prep for running data 
analysis and modeling.  

Early in the framework, we set parameters which control the subsequent operation of the workflow. In the 
report, we document these in an appendix. 

When we read the data, we convert specified columns to categorical factors to ensure proper data 
handling and adjust the labels for the ‘face_amount_band’ factor to avoid issues in model outputs. The 
dataset is split into training and testing sets based on the observation year, with the year 2017 data used 
for validation.  
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Section 4: Models 

4.1 GLM 
Below is an analysis using a main-effects GLM to better understand the data. We integrate two modeling 
approaches: 

• Standard GLM analysis with model calibration (but no model building), including presentation of 
coefficients and residuals analysis, and 

• An approach to explore the interactions of the main effects model along selected dimensions of 
the data, checking the average main effects for those subsets, weighted according to the offset 
used in the analysis. 

4.1.1 MODEL SUMMARY 
Model Summary 
Below is the table of coefficients for the fitted GLM. Each entry is a coefficient in the table for the level of 
the indicated variable. The estimate and standard errors are on the scale of the linear predictor. For a 
Poisson model with log link, this means they are on the log scale. 

Coefficient Estimate Standard Error z value Pr(>|z|)  
(Intercept) 0.978 0.091 10.743 0.0000 *** 
uwN/2/1 -0.152 0.011 -13.931 0.0000 *** 
uwN/2/2 0.248 0.010 23.945 0.0000 *** 
uwN/3/1 -0.324 0.014 -23.614 0.0000 *** 
uwN/3/2 -0.180 0.012 -14.802 0.0000 *** 
uwN/3/3 0.152 0.011 14.077 0.0000 *** 
uwN/4/1 -0.330 0.014 -23.555 0.0000 *** 
uwN/4/2 -0.166 0.015 -11.060 0.0000 *** 
uwN/4/3 0.011 0.017 0.630 0.5287     
uwN/4/4 0.208 0.016 12.618 0.0000 *** 
uwS/1/1 0.068 0.014 4.778 0.0000 *** 
uwS/2/1 -0.179 0.021 -8.637 0.0000 *** 
uwS/2/2 0.112 0.022 5.178 0.0000 *** 
uwU/1/1 0.261 0.038 6.794 0.0000 *** 
face_amount_band04 - 50,000 - 99,999 -0.113 0.018 -6.410 0.0000 *** 
face_amount_band05 - 100,000 - 249,999 -0.236 0.015 -15.413 0.0000 *** 
face_amount_band06 - 250,000 - 499,999 -0.299 0.016 -18.893 0.0000 *** 
face_amount_band07 - 500,000 - 999,999 -0.322 0.016 -20.258 0.0000 *** 
face_amount_band08 - 1,000,000+ -0.349 0.015 -23.004 0.0000 *** 
dur_band102 0.010 0.030 0.341 0.7334     
dur_band103 0.000 0.029 0.006 0.9951     
dur_band104-05 -0.044 0.026 -1.686 0.0917   . 
dur_band106-15 -0.115 0.028 -4.084 0.0000 *** 
dur_band116-25 -0.096 0.031 -3.088 0.0020  ** 
ia_band125-34 -0.062 0.034 -1.813 0.0699   . 
ia_band135-44 -0.045 0.033 -1.347 0.1779     
ia_band145-54 -0.075 0.033 -2.258 0.0239   * 
ia_band155-64 -0.100 0.033 -3.024 0.0025  ** 
ia_band165-74 -0.082 0.033 -2.440 0.0147   * 
ia_band175-84 -0.173 0.034 -5.100 0.0000 *** 
ia_band185-99 -0.304 0.040 -7.581 0.0000 *** 
genderM 0.011 0.006 1.790 0.0735   . 
insurance_planPerm -0.134 0.062 -2.159 0.0308   * 
insurance_planTerm -0.275 0.069 -3.977 0.0001 *** 
insurance_planxL -0.042 0.061 -0.681 0.4958     
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Coefficient Estimate Standard Error z value Pr(>|z|)  
ltp10 yr -0.090 0.034 -2.650 0.0080  ** 
ltp15 yr -0.097 0.034 -2.826 0.0047  ** 
ltp20 yr -0.207 0.033 -6.286 0.0000 *** 
ltp25 yr -0.247 0.049 -5.077 0.0000 *** 
ltp30 yr -0.161 0.036 -4.502 0.0000 *** 
ltpNot Level Term -0.396 0.045 -8.750 0.0000 *** 
ltpUnknown -0.207 0.036 -5.804 0.0000 *** 
iy_band11990-1999 -0.073 0.023 -3.209 0.0013  ** 
iy_band12000-2009 -0.148 0.026 -5.706 0.0000 *** 
iy_band12010+ -0.206 0.030 -6.857 0.0000 *** 

Signif. codes: 0 <= '***' < 0.001 < '**' < 0.01 < '*' < 0.05 
  
(Dispersion parameter for quasipoisson family taken to be 700118) 
Null deviance: 6.172e+10 on 249979 degrees of freedom 
Residual deviance: 5.662e+10 on 249935 degrees of freedom 

 
ANOVA 
The ANOVA table displays the analysis of deviance for the GLM. For each variable, we see the proportion of 
deviance explained by that variable and its associated degrees of freedom. 



  13 

 

Copyright © 2024 Society of Actuaries Research Institute 

feature Df Deviance Resid. Df Resid. Dev Pr(>Chi) 

NULL   249,979 61,716,566,139  

uw 13 3,858,650,451 249,966 57,857,915,688 < 0.1% 

face_amount_band 5 701,275,400 249,961 57,156,640,288 < 0.1% 

dur_band1 5 118,698,616 249,956 57,037,941,672 < 0.1% 

ia_band1 7 162,999,155 249,949 56,874,942,517 < 0.1% 

gender 1 3,395,713 249,948 56,871,546,804 2.76% 

insurance_plan 3 57,762,926 249,945 56,813,783,878 < 0.1% 

ltp 7 152,501,012 249,938 56,661,282,865 < 0.1% 

iy_band1 3 41,049,822 249,935 56,620,233,043 < 0.1% 

 
Lift 

The lift plot compares the GLM against the underlying mortality table. 

 
  



  14 

 

Copyright © 2024 Society of Actuaries Research Institute 

Lorenz Plot 

The Lorenz plot demonstrates a model’s ability to stratify predictions against a null baseline. 

 
The table of coefficients shows a number of interesting phenomena and, perhaps, some surprises: 

• Gender is not significant. Since we are using an offset of tabular expected rates, the interpretation 
is that the underlying differentials in the tabular expected rates are adequate for the current data, 
after adjusting for other factors. 

• Underwriting is the most influential factor from the ANOVA perspective. 
• Both the most recent issue years (2010+) and the most recent durations show significant mortality 

factors. Durations 1 and 2 are significantly higher than durations 3+ 
• While insurance plans other than “Other” are significantly different from 0, a quick glance at the 

effects plot shows that the UL/VL plans are not significantly different from each other and with 
Perm, while Term is borderline significantly different from UL/VL. 

• Face amount bands $250K and greater have factors not significant from one another. 

4.1.2 MODEL ILLUSTRATIONS AND GRAPHICS 
Effects Plots 
Because the model contains every column, this is equivalent to computing the marginal actual-to-tabular 
ratios. However, the model also provides standard errors, which is useful for assessing the significance of 
the marginal ratios. 
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Goodness-of-Fit 
Goodness-of-fit tables are provided. Each table provides actual-to-model ratios for single variables and for 
two-way combinations of variables. A model is qualitatively deemed to perform well if goodness-of-fit 
ratios are close to 100% in almost all situations. The quantitative assessment using significance testing is 
omitted here. 

See the Excel tables in Exhibits 1 and 2 accompanying this report for additional information. 

Subgroup Variability 
This section reproduces Brian Holland’s publication. For background on the tables generated below, please 
refer to the publication. 
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See the Excel tables in Exhibit 3 accompanying this report for more information. 

4.2 LIGHTGBM 

4.2.1 DATA PREPARATION 
First, the data are prepared for LightGBM. LightGBM expects matrices for its inputs. Thereafter, the 
LightGBM model is trained. Factors are recast as their underlying integer indices. 

4.2.2 MODEL FITTING 
The LightGBM model is fit to the training subset using a Poisson objective. The model response is the ratio 
of response variable and response offset, and the weights are the specified offset. Often, this might be 
“actual claims” as the response and “expected claims” as the offset. 

4.2.3 MODEL ILLUSTRATIONS AND GRAPHICS 
From this, we can plot decile lift and Lorenz curves. 

The decile lift plot can be interpreted as a way to visualize the effectiveness of a predictive model. It divides 
the data into ten parts (deciles) based on the model’s predictions, from the highest probability of an event 
occurring to the lowest. The steeper the plot against deciles, the better the segmentation or lift. We see 
three lines. The “table” line indicates that the expected mortality is relatively constant across these model 
deciles, even though the “actual” mortality and the mortality predicted by the “model” vary substantially, 
indicating significant risk stratification. 

The Lorenz curve described is another way of visualizing the risk stratification of the model. The more 
bowed the line is from the y=x axis, the greater the Gini coefficient and the greater the risk stratification. 

Understanding the behavior of the interactions, as well as gain and cover, can give us some macro insight 
into what the model is doing. The feature interaction table ranks and demonstrates the most important 
interactions in the model. ‘Gain’ refers to the improvement in accuracy brought by a feature to the 
branches it is on, thus indicating the feature is important. ‘Cover’ measures the number of times a feature 
is used to split the data across all trees regardless of the gain in accuracy achieved. A high gain with a high 
cover suggests a feature that is very useful across many parts of the dataset. 
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Lift Curve 

 
Lorenz Curve 

 
Feature Importance 
The following plot is the feature importance plot, which ranks the mean absolute SHAP value for a given 
feature. It should be noted that being low on the list does not automatically imply that a feature is 
unimportant. Due to phenomena such as aggregation bias, features with relatively higher numbers of levels 
can seemingly rank higher than those with lower numbers of levels. Here, the top three tend to have large 
numbers of levels versus the bottom four. 
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Feature Interaction Table 
We also develop a table of interaction strengths, sorted by the total contribution to explaining variation in 
the data. Again, aggregation bias can distort the ranking, so interpreting the ranking should be taken with 
caution. 

Feature sumGain sumCover frequency meanCover meanGain 

ia_band1:uw 1,228,300,000 22,200,000 3,003 7,393 409,024 

face_amount_band:uw 869,600,000 6,159,000 2,112 2,916 411,742 

face_amount_band:ia_band1 793,300,000 6,354,000 2,185 2,908 363,066 

dur_band1:uw 745,800,000 6,395,000 1,677 3,813 444,723 

dur_band1:ia_band1 658,700,000 10,341,000 1,739 5,947 378,781 

dur_band1:face_amount_band 642,300,000 3,509,000 1,522 2,306 422,011 

dur_band1:ltp 602,600,000 4,825,000 1,101 4,382 547,321 

ltp:uw 539,000,000 8,995,000 1,432 6,281 376,397 

ia_band1:ltp 499,900,000 6,590,000 1,294 5,093 386,321 

insurance_plan:uw 450,500,000 2,941,000 683 4,306 659,590 

face_amount_band:gender 432,800,000 2,219,600 1,018 2,180 425,147 

gender:uw 430,400,000 2,691,000 1,119 2,405 384,629 

gender:ia_band1 420,000,000 3,063,000 1,136 2,696 369,718 

face_amount_band:ltp 414,800,000 4,405,000 1,179 3,736 351,824 

iy_band1:uw 386,600,000 7,947,000 1,133 7,014 341,218 

ia_band1:iy_band1 384,800,000 6,330,000 1,041 6,081 369,645 

face_amount_band:iy_band1 374,000,000 4,715,000 1,023 4,609 365,591 

ia_band1:insurance_plan 370,400,000 7,233,000 964 7,503 384,232 

face_amount_band:insurance_plan 321,900,000 2,630,400 734 3,584 438,556 

dur_band1:gender 245,090,000 1,512,500 688 2,198 356,235 

dur_band1:iy_band1 210,720,000 3,843,000 631 6,090 333,946 
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Feature sumGain sumCover frequency meanCover meanGain 

dur_band1:insurance_plan 200,320,000 1,770,400 529 3,347 378,677 

insurance_plan:ltp 186,950,000 1,353,500 164 8,253 1,139,939 

gender:insurance_plan 145,750,000 837,300 310 2,701 470,161 

insurance_plan:iy_band1 133,400,000 3,095,000 427 7,248 312,412 

iy_band1:ltp 129,660,000 3,644,000 556 6,554 233,201 

gender:iy_band1 117,310,000 1,447,700 421 3,439 278,646 

gender:ltp 113,770,000 1,203,000 471 2,554 241,550 

Gain versus Cover 
As noted above, ‘gain’ refers to the improvement in accuracy brought by a feature to the branches it is on, 
thus indicating the feature is important. ‘Cover’ measures the number of times a feature is used to split the 
data across all trees regardless of the gain in accuracy achieved. A high gain with a high cover suggests a 
feature that is very useful across many parts of the dataset. 

 

4.2.4 FEATURE PLOTS 
It is useful to plot SHAP values for their main effects (e.g., SHAP values for face amount band by face 
amount band), as well as interactions (e.g., same, but stratified in some way by other variables). 
Traditionally, scatter plots are used. However, due to overplotting, it is not clear what is going on with the 
SHAP values. Here we use boxplots of the SHAP values instead of scatter plotting. This provides a sense of 
the spread of the SHAP values along with the median and outliers. This is particularly useful for qualitatively 
evaluating whether there are any meaningful interactions. 

In what follows, red diamonds are mean SHAP values, while blue squares are mean mortality from a subset 
of the data. Note that SHAP values are partial effects which work in concern with the other features. 
Therefore, the mean actual mortality will not necessarily be captured by the variability of the feature SHAP 
values. 
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Some patterns are noticeable. We discuss them for each group. You can visually detect an interaction by 
checking whether the box plots are all on the same level for a given subgroup. 

uw: main effect and interactions 

• Main effect 
o The spreads from highest to lowest risk classes are similar across non-smoker class systems. 
o Smoker differentiation is narrower than for two-class non-smokers. 

• Interaction with face amount band 
o The interaction between underwriting and face amount band, for the underwriting effect, 

appears confined mostly to three-class non-smoker (N/3/*).  
o Higher face amount bands ($250K+ in the light dataset) appear to have a larger spread of 

effects. 
• Interaction with issue age band: possible narrowing at older ages for two- or four-class non-

smokers. 
• Interaction with observation year: possible widening of spread of four-class non-smokers with 

increasing observation year. 
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face_amount_band: main effect and interactions 

• Main effect: expected decrease as face amount band increases. 
• Interaction with underwriting: face amount effect may be interacting with the Unknown smoker 

category. 
• Interaction with issue age band: 

o Decreasing effect by issue age for lower bands, flipping to increasing effect by issue age for 
upper issue age bands 

o Put another way, spread of face amount effects decreases with increasing issue age 

Interaction with Observation Year: no obvious effect 
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ia_band1: main effect and interactions 
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Issue Age Band (ia_band1) 

1. Main Effect: With the exception of ages 18-24, decreasing issue age effect by issue age. 
2. Interaction with face amount band: similar to face amount band, spread decreases with increasing 

issue age. 
3. Interaction with underwriting: substantial changes above issue age 75, qualitatively negligible 

below age 75. 
4. Interaction with observation year: no obvious interaction. 

4.2.5 GOODNESS-OF-FIT 
Goodness-of-fit tables are provided. Each table provides actual-to-model ratios for single variables and for 
two-way combinations of variables. A model is qualitatively deemed to perform well if goodness-of-fit 
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ratios are close to 100% in almost all situations. The quantitative assessment using significance testing is 
omitted here. 

See the Excel tables in Exhibits 4 and 5 accompanying this report for more information. 

4.3 ELASTIC NET GLM 

4.3.1 BACKGROUND 
Elastic net regularization allows the modeler to combine both LASSO and Ridge penalties into a single 
model. 

As one may recall, ordinary least squares regression requires minimizing the squared difference of the 
response variable and the predicted values. In symbols, 

argmin
𝛽𝛽

� (𝑦𝑦 − 𝑋𝑋𝑋𝑋)2
𝑛𝑛

 

This is equivalent to maximum likelihood estimation, where one assumes that the response variable 𝑦𝑦 is 
normally distributed with mean 𝑋𝑋𝑋𝑋 and variance 𝜎𝜎2𝐼𝐼𝑘𝑘𝑘𝑘𝑘𝑘 . The maximum is taken with respect to 𝛽𝛽, and the 
variance parameter is assumed to be fixed but unknown. 

The LASSO and Ridge regression methods each add an additional penalty term on the coefficients 𝛽𝛽. The 
LASSO adds the sum of the absolute values of the parameters 𝛽𝛽 subject to a tunable weight, 𝜆𝜆. This term 
incentivizes the fitting algorithm to fit toward parameter values close to 0. 

argmin
𝛽𝛽

� (𝑦𝑦 − 𝑋𝑋𝑋𝑋)2
𝑛𝑛

+ 𝜆𝜆� |𝛽𝛽𝑘𝑘|
𝑘𝑘

 

The Ridge penalty adds the sum of the squares of the parameters 𝛽𝛽, subject to a tunable weight, 𝛼𝛼. This 
term also incentivizes the fitting algorithm to fit toward parameter values close to 0. 

argmin
𝛽𝛽

� (𝑦𝑦 − 𝑋𝑋𝑋𝑋)2
𝑛𝑛

+ 𝛼𝛼�𝛽𝛽𝑘𝑘2
𝑘𝑘

 

What may be new to some readers is that, in both cases, for special 𝜆𝜆 or 𝛼𝛼, the minimizers of these 
expressions correspond to the Bayesian maximum a posteriori (MAP) estimators for specific prior 
distributions for 𝛽𝛽. In the Ridge case, the prior is the normal distribution with mean 0 and covariance 
𝜏𝜏2𝐼𝐼𝑘𝑘×𝑘𝑘  for some assumed 𝜏𝜏2. 

For the LASSO, the prior is the double-exponential or Laplace distribution with mean 0 and parameter 𝜏𝜏. 

In either case, it can be shown that if 𝜎𝜎2 and 𝜏𝜏 are known, the penalizing weights have unique solutions and 
are equivalent to the 𝑘𝑘 term in Bühlmann credibility. In practice, the penalizing weights are unknown and 
must be tuned. The resulting optimal 𝛽𝛽 is also credible from a Bayesian perspective. Moreover, it can be 
shown that these facts carry over to the GLM case. 

4.3.2 DATA PREPARATION 
Elastic net GLMs as implemented in the glmnet package require that the inputs be converted to model 
matrices. 

4.3.3 MODEL FITTING 
Once the data are set up, we can calibrate a LASSO penalty, lambda, using n-fold cross-validation. 
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Model Plots and Tables 
An important by-product of the n-fold cross validation is the plot of 𝜆𝜆 values. The optimal choice of 𝜆𝜆 is the 
lowest, and the model associated with that 𝜆𝜆 is the final model. 

One can also plot the trajectory of coefficients as progressively higher 𝜆𝜆 impose ever harsher penalties on 
the coefficients. 

Lambda Plot 

 
Coefficient Penalization 
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Final Model 
The table of coefficients for the elastic net model is substantial. Please see the accompanying Excel file for 
additional information. 

Lift 

 
Lorenz Curve 
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4.3.4 PLOTS OF TERMS 
Plots of the two-way interaction terms, with external factors fixed at their middle values, are provided in 
Appendix C – Elastic Net Plots of Terms. 

4.3.5 TABLES OF TERMS 
We provide a table of coefficients from the elastic net model and tables of two-way interactions, with 
external factors fixed at their middle values. 

See the Excel table in Exhibits 6 and 7 accompanying this report for more information.  

4.3.6 GOODNESS-OF-FIT 
Goodness-of-fit tables are provided. Each table provides actual-to-model ratios for single variables and for 
two-way combinations of variables. A model is qualitatively deemed to perform well if goodness-of-fit 
ratios are close to 100% in almost all situations. The quantitative assessment using significance testing is 
omitted here. 

See the Excel tables in Exhibits 8 and 9 accompanying this report for more information. 

  



  35 

 

Copyright © 2024 Society of Actuaries Research Institute 

Section 5: Comparison of Model Predictions 

5.1 GOODNESS OF FIT 
It is important to compare model performance on the test dataset. Models tend to fit well on the training 
data. 

We compute the MSE, MAD, and Poisson deviance for each model on the test dataset. Models with lower 
values are considered qualitatively better. 

Across all measures, the elastic net GLM model has the lowest deviation, with the LightGBM qualitatively 
not far behind. The main-effects GLM does not compete, which reinforces the need for some 
accommodation of interactions. 

model mse mae dev 

glm 657,407,396,611,204 10,369,070 1,552,142,707,959,196 

elasticnet 285,309,606,550,480 8,470,467 723,646,527,740,728 

lgbm 355,563,440,625,343 8,741,101 909,129,632,590,165 

5.2 GRAPHICAL MODEL COMPARISON 
Unlike the GLM, neither the LightGBM nor the penalized GLM provide any information regarding 
parameter uncertainty. For elastic net GLMs, there are options to estimate parameter uncertainty: 

• Move to a fully Bayesian setting. This gives the modeler significant control, at the cost of 
complexity (e.g., how to choose reasonable priors) and computation cost. Stan and INLA are 
available for this purpose. 

• Apply the method in Tibshirani et al’s “A significance test for the lasso.” This requires rerunning 
penalized GLMs and is, thus, potentially costly. 

• Apply the method in Lederer’s Fundamentals of High-Dimensional Statistics, Sec. 5.2. While 
technically involved, there does not seem to be a heavy computational lift. 

To get around the limitations of assessing uncertainty for now, we plot the models versus the envelope of 
uncertainty arising from the data itself. This shifts the point of view from assessing parameter uncertainty 
to assessing goodness-of-fit. 

The plots are provided in Appendix C – Graphical Comparison of Models. 

Broad observations: 

• In 2017, some of the average relationships shifted versus 2013-2016. This can be seen by noting 
the model dots resting outside the error bars. 

• The elastic net model may be missing some higher order interactions. 

  

https://arxiv.org/abs/1301.7161
https://johanneslederer.com/hdbook/
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Section 6: Mortality Differences by Product Use Case 

6.1 OBSERVATIONS FROM THE RAW DATA 
When assessing differences by product, it is not hard to find challenges when looking at the raw, 
unadjusted data. 

One example is that there is virtually no four-class non-smoker exposure in Perm, while there is significant 
exposure in Term. This implies that there is a potential issue of identifiability in interactions between 
insurance plan and underwriting due to the imbalance in exposures. This manifests as an apparent 
instability in calibrations. 

For example, the marginal difference between the four-class and two-class non-smokers in the data is 
82.42% (78.2%/94.9%), while the marginal difference between Term and Perm is 86.5% (83.4%/96.4%). 

No. of Pref. Classes A/2015VBT 

1 97.2% 

2 94.9% 

3 81.4% 

4 78.2% 

 

Insurance Plan A/2015VBT 

Term 83.4% 

xL 89.2% 

Perm 96.4% 

Other 84.1% 

 

By way of comparison, the GLM calibrates 86.8% for Term versus Perm, and the weighted average factors 
for four-class systems from the GLM model are 79.3% versus 95.7% for two-class, for a ratio of 82.8%. The 
main effects GLM is, therefore, asserting that both conditions are associated with lower mortality. 

For the elastic net GLM, the situation is complicated. All in, there are 52 factors which mention insurance 
plan, and assessing when perm and term differ is challenging on a bare reading of the factor table. 

For the LightGBM model, there is arguably no interesting mean difference for between Perm and Term. 

Insurance Plan Model / 2015VBT 

Other 67.0% 

Perm 91.3% 

Term 93.3% 

xL 102.9% 

 

For class system, the LightGBM model is illustrating a substantial reduction in mean mortality for the four-
class systems relative to two-class systems. 
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No. of Pref. Classes Model / 
2015VBT 

1 104.4% 

2 100.9% 

3 101.0% 

4 86.2% 

 

All of this strongly suggests the need for more sophisticated analysis. 

6.2 OBSERVATIONS FROM THE GLM 
One question of interest to actuaries is why different products have different mortality outcomes. Many 
things could contribute to the difference, such as underwriting practice, anti-selection risk level, market 
segment, etc., and generally, it is hard to quantify their impact. With the GLM model and relevant analysis, 
we have a possible solution. 

Let us revisit the table output with insurance plan as the predictor of interest. 

Weighted Average GLM Factors for Variable: insurance_plan 

 Other Perm Term xL 

amount_2015vbt 84.11% 96.38% 83.40% 89.23% 

Factor: insurance_plan 100.00% 87.49% 75.96% 95.90% 

Ave Fac: dur_band1 93.06% 90.98% 91.02% 90.24% 

Ave Fac: face_amount_band 73.00% 79.13% 73.39% 73.66% 

Ave Fac: gender 100.67% 100.70% 100.82% 00.60% 

Ave Fac: ia_band1 91.24% 92.20% 93.25% 88.70% 

Ave Fac: iy_band1 84.52% 91.05% 86.36% 87.41% 

Ave Fac: ltp 67.33% 67.33% 84.55% 67.33% 

Ave Fac: uw 97.90% 101.27% 90.51% 100.25% 

 

For illustration, let us select Perm and Term for pairwise comparison. By A/15VBT, Perm (96.4%) seems to 
have worse mortality than Term (83.4%). Is this due to “product differences?” 

Weighted Average GLM Factors for Variable: insurance_plan in (Perm, Term) 

 Perm Term 

amount_2015vbt 96.38% 83.40% 

Factor: insurance_plan 87.49% 75.96% 

Ave Fac: dur_band1 90.98% 91.02% 

Ave Fac: face_amount_band 79.13% 73.39% 

Ave Fac: gender 100.70% 100.82% 

Ave Fac: ia_band1 92.20% 93.25% 

Ave Fac: iy_band1 91.05% 86.36% 

Ave Fac: ltp 67.33% 84.55% 

Ave Fac: uw 101.27% 90.51% 
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Thanks to the GLM model, we can work with a multiplicative formula for prediction. And, with this elegant 
structure, we can parse out the impact of each individual predictor and make comparisons. The relative 
impact is represented by the rate of change. 

Of these, the movement in underwriting is the most influential, with ratio 111.9% for Perm over Term. This 
means that, if all the other predictors are controlled, the average underwriting factor on a risk-adjusted 
basis will make Perm mortality prediction approximately 11.9% higher than that of Term. Other influential 
drivers from this analysis include face amount band, issue year band, and level term period. This may 
suggest that, if actuaries/modelers want to build a simpler model yet still capture essential impact to 
mortality outcome, they might consider including at least those predictors in the GLM model. 

One should nonetheless look to residuals and distributions to ensure that valuable interactions are not 
being lost. Part of what we are seeing has to do with the different distributions between Perm and Term of 
underwriting and face_amount_band. Perm tends to favor one- and two-class risk class systems, while 
Term tends to favor three- and four-class systems. Perm also tends to favor lower face amounts, while 
Term favors higher face amounts. 
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In light of what we see for distribution, it is unsurprising that the model fits poorly for the Term subset for 
smaller face amounts and one- and two-class systems, while the model fits the Perm subset poorly for 
three- and four-class systems. Since Perm tends to dominate the lower face amounts, model fit is not 
nearly as poor there as for the Term subset. 
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Fitting a main-effects GLM on a dataset is a frequently used first step when modeling any dataset. 
Analyzing residuals from this model and assessing parameter variability by subgroup can reveal useful 
patterns for further analysis. It is often the case that interactions of effects are present. While a useful 
starting point, main-effects models cannot capture such interactions effectively. It is, therefore, necessary 
to turn to richer models and approaches. 

6.3 OBSERVATIONS FROM THE GRADIENT BOOSTING DECISION TREE 
Below are box plots of SHAP values for insurance_plan by the other variables. 

We have noted the interactions with insurance plan from the LightGBM SHAP values as follows: 
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• Main Effect: Perm and Term SHAP distributions are qualitatively similar, with the xL class higher. 

 

• Interaction with underwriting: 
o Substantial interaction with the “Other” category 
o For Term, some evidence of higher mortality for N/4/3 and N/4/4 
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• Interaction with face amount band: 
o No obvious interactions with Perm and Term 
o Weak evidence for interaction with xL, based on U-shaped pattern in boxplots 

 

• Interaction with duration 
o Weak evidence for elevated mortality in early durations for Perm 
o Weak evidence for opposite in early durations for Term 
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o Face amounts $1 million and higher for “Other” are plainly different from lower face amount 
“Other” 

 

• Interaction with issue age 
o Evidence for different issue age slope (relative to 2015VBT) for xL based on downward trend 

in boxplots 
o Weak evidence for slight upward issue age slope (relative to 2015VBT) for Term based on 

trend in boxplots 
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• Interaction with gender: no obvious interaction 

 

• Interaction with level term period: 
o Obviously, no interactions outside of Term 
o Within Term, “Not Level Term” has lower mortality than the other level Term types 
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• Interaction with issue year band: 
o Since 1990, there is evidence of an upward trend in mortality for all categories outside of 

“Other.” 

6.4 CONTRASTS OF INTERACTIONS WITH INSURANCE PLAN FROM THE ELASTIC NET MODEL 
The elastic net model encodes interesting interactions of insurance plan with other predictor variables. 
Graphing the contrast between insurance plan types can reveal patterns which are difficult to see when 
looking at the bare coefficients or tables of factors. 

To do so, we can gather the table of factors, which include insurance plan, and compute the ratio of the 
factors versus the factors for Term. For example, if the marginal factor for Perm males is 99%, and the 
factor for Term males is 90%, then the ratio is 110%. These contrasts can then be plotted for both males 
and females across the plan comparisons, as can be seen in the following graphs. 
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• It appears that the gap between UL/VL/ULSG/VLSG and Term has been narrowing with increasing 
issue year. 

 

• xL and Other tend to have a wider spread of factors for face amount than Term, while Perm has a 
narrower spread of face amount factors than Term. 



  47 

 

Copyright © 2024 Society of Actuaries Research Institute 

 

• Perm and xL tend to have a flatter slope than Term by issue age, except above issue age 65. Above 
issue age 65, the slope of Perm and xL diverges. 

 

• Perm tends to have higher duration 2 experience than others. 



  48 

 

Copyright © 2024 Society of Actuaries Research Institute 

 

• The gender differential for males is narrower for Perm than for Term. 

A different view helps illustrate the interactions of underwriting and insurance plan. It can be seen that 

• The residual standard class of a two-class non-smoker system for Term is much higher than the 
others. 

• The spread for Term and xL in the four-class non-smoker system is wider than for Perm and Other. 
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Section 7: Summary 
In this analysis, we explored the application of a predictive modeling framework within actuarial experience 
studies, focusing on mortality differences by product type in the ILEC dataset. Our analysis revealed several 
key insights and mortality differentials that can be useful to understand drivers of mortality. This 
framework and the findings demonstrated the use and considerations required of predictive modeling and 
underscore its value in making informed actuarial decisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

https://soa.qualtrics.com/jfe/form/SV_cTFAdgtTa9furBk?Code=ML197&Type=PR
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Appendices 

APPENDIX A – FRAMEWORK PARAMETERS 
Parameter Description 

prototype Sets whether to limit the dataset size 

prototype_size Size of the subset from the dataset, if prototype is True 

nTrainSeed Random number seed for generating a train-test split 

nGLMNetCores Number of cores which should be provisioned for elastic net cross validation 

nInteractionDepth How many interactions to include in the elastic net GLM if desired; used if 
nUseTopLightGBMInteractions is set to 0 

fGLMNetAlpha The weight used in the elastic net GLM for the alpha parameter 

nUseTopLightGBMInteractions Number of two-way interactions from the LightGBM analysis to use in the elastic 
net GLM 

bUseSparse Instruct the glmnet package to use sparse matrices 

nELSeed Seed for elastic net cross validation 

flgbm_vis_subset Random fraction of data to use for LightGBM ridgeplot visualizations 

bFullInteractions Requests full interaction SHAPs 

nPlotTopFeatures How many top features to plot for LightGBM 

nPlotTopInteractions How many top interactions to plot for LightGBM 

nGBMSeed Seed for LightGBM 

runGLM 

runLightGBM 

runGLMInt 

Switches to include the subanalyses for each model 

bDebug For code that relies on it, set to debugging 

bUseCache Large or difficult-to-compute objects are saved; if True, saved objects are loaded 
if bInvalidateCaches is also False 

bInvalidateCaches Set to True to force computation of all objects 

src_file Source file for data, can be either CSV or Parquet format, and local or HTTP 
hosted. If AWS, it will detect this situation and use Arrow’s API to load the data 

resp_var Name of the response variable 

resp_offset Name of the response offset 

pred_cols Name of the predictor columns 

factor_cols Name of the columns to treat as factors 
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APPENDIX B – ELASTIC NET PLOTS OF TERMS 
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APPENDIX C – GRAPHICAL COMPARISON OF MODELS 
Below are plots of how the model performs versus marginal effects, with performance tested on the test 
subset. Black dots with error bars are from the actual-to-2015VBT ratio, with error bar width based on the 
dispersion from the GLM model. (Caution: this is at best a crude approximation.) 

The following colors denote specific predictive model ratios versus the 2015 VBT: 

• Red uses GLM predicted claims 
• Blue uses predicted claims from the elastic net GLM 
• Green uses LightGBM predicted claims 

 
1ia_band1 by uw 
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2face_amount_band by uw 

 
3face_amount_band by ia_band1 
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4dur_band1 by face_amount_band 

 
5dur_band1 by uw 
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6dur_band1 by ia_band1 

 
7face_amount_band by gender 
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8dur_band1 by ltp 

 
9face_amount_band by ltp 
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10ltp by uw 

 
11face_amount_band by iy_band1 
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12ia_band1 by ltp 

 
Figure 13 - insurance_plan by uw 
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14gender by ia_band1 

 
15ia_band1 by iy_band1 
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16gender by uw 

 
17face_amount_band by insurance_plan 
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18ia_band1 by insurance_plan 

 
19iy_band1 by uw 
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20dur_band1 by gender 

 
21insurance_plan by ltp 



  77 

 

Copyright © 2024 Society of Actuaries Research Institute 

 
22dur_band1 by iy_band1 

 
23dur_band1 by insurance_plan 
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24gender by insurance_plan 

 
25iy_band1 by ltp 
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26insurance_plan by iy_band1 

 
27gender by iy_band1 
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28gender by ltp 
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