

# CURATED PAST EXAM ITEMS - Questions -

GI 101 – Ratemaking and Reserving

#### Important Information:

- These curated past exam items are intended to allow candidates to focus on past SOA fellowship assessments. These items are organized by topic and learning objective with relevant learning outcomes, source materials, and candidate commentary identified. We have included items that are relevant in the new course structure, and where feasible we have made updates to questions to make them relevant.
- Where an item applies to multiple learning objectives, it has been placed under each applicable learning objective.
- Candidate solutions other than those presented in this material, if appropriate for the context, could receive full marks. For interpretation items, solutions presented in these documents are not necessarily the only valid solutions.
- Learning Outcome Statements and supporting syllabus materials may have changed since each exam was administered. New assessment items are developed from the current Learning Outcome Statements and syllabus materials. The inclusion in these curated past exam questions of material that is no longer current does not bring such material into scope for current assessments.
- Thus, while we have made our best effort and conducted multiple reviews, alignment with the current system or choice of classification may not be perfect. Candidates with questions or ideas for improvement may reach out to <u>education@soa.org</u>. We expect to make updates annually.



# Contents

| GI 101 – LEARNING OBJECTIVE 1                       | 7                                |
|-----------------------------------------------------|----------------------------------|
| GIRR Fall 2020 Question 15 (LOs 1d, 1i, 4b, 4c)     | 8                                |
| GIRR Fall 2021 Question 6 (LOs 1d, 1f, 3g, 3j)      |                                  |
| GIRR Fall 2021 Question 18 (LOs 1d, 3f, 3g, 4a, 4b) |                                  |
| GIRR Spring 2022 Question 2 (LOs 1d, 2a, 3c, 3d)    |                                  |
| GIRR Fall 2022 Question 7 (LOs 1j, 3c, 3d)          |                                  |
| GIRR Fall 2022 Question 18 (LOs 1d, 2a)             |                                  |
| GIRR Spring 2023 Question 2 (LOs 1g, 2a)            |                                  |
| GIRR Fall 2023 Question 1 (LOs 1d, 2a, 3d)          |                                  |
| GIRR Spring 2024 Question 7 (LOs 1d, 3e, 3f, 3g)    |                                  |
| GIRR Fall 2024 Question 3 (LOs 1l, 6d, 6e)          |                                  |
| GIRR Fall 2024 Question 4 (LOs 1d, 2a, 2c)          |                                  |
| GI 101 – LEARNING OBJECTIVE 2                       |                                  |
| GIRR Fall 2020 Question 1 (LOs 2a)                  |                                  |
| GIRR Fall 2020 Question 9 (LOs 2d, 3e, 3f, 3g)      |                                  |
| GIRR Fall 2020 Question 16 (LOs 2d, 5b, 5e, 6g)     |                                  |
| GIRR Spring 2021 Question 1 (LOs 2c, 2d)            |                                  |
| GIRR Fall 2021 Question 1 (LOs 2c, 2d)              |                                  |
| GIRR Fall 2021 Question 6 (LOs 2d, 3g)              |                                  |
| GIRR Fall 2021 Question 16 (LOs 2a, 3c, 3d)         |                                  |
| GIRR Spring 2022 Question 1 (LOs 2c, 2d)            |                                  |
| GIRR Spring 2022 Question 2 (LOs 1d, 2a, 3c, 3d)    | 50                               |
| GIRR Fall 2022 Question 2 (LOs 2d)                  |                                  |
| GIRR Fall 2022 Question 11 (LOs 2b, 2c)             |                                  |
| GIRR Fall 2022 Question 18 (LOs 1d, 2a)             |                                  |
| GIRR Spring 2023 Question 1 (LOs 2b, 2c, 2d)        |                                  |
| GIRR Spring 2023 Question 2 (LOs 1g, 2a)            |                                  |
| GIRR Fall 2023 Question 1 (LOs 1d, 2a, 3d)          |                                  |
| GIRR Fall 2023 Question 9 (LOs 2d)                  |                                  |
| GIRR Fall 2023 Question 15 (LOs 2c, 2d)             |                                  |
| GIRR Spring 2024 Question 1 (LOs 2c, 2d)            |                                  |
| Version 2025-1                                      | Copyright © Society of Actuaries |



| GIRR Spring 2024 Question 5 (LOs 1d, 1f, 3g, and 3j)             | 70  |
|------------------------------------------------------------------|-----|
| GIRR Spring 2024 Question 13 (LOs 2a)                            | 73  |
| GIRR Fall 2024 Question 4 (LOs 1d, 2a, 2c)                       | 75  |
| GIRR Fall 2024 Question 10 (LOs 2a, 3e, 3g)                      | 77  |
| GIRR Fall 2024 Question 11 (LOs 2d, 5b, 5e)                      | 79  |
| GI 101 – LEARNING OBJECTIVE 3                                    | 80  |
| GIRR Fall 2020 Question 2 (LOs 3e, 3f, 3g)                       | 81  |
| GIRR Fall 2020 Question 7 (LOs 3j)                               | 83  |
| GIRR Fall 2020 Question 9 (LOs 2d, 3e, 3f, 3g)                   | 84  |
| GIRR Fall 2020 Question 17 (LOs 3h, 3i)                          | 86  |
| GIRR Fall 2020 Question 19 (LOs 3e, 3g)                          | 88  |
| GIRR Spring 2021 Question 2 (LOs 3c, 3d)                         | 91  |
| GIRR Spring 2021 Question 3 (LOs 3g, 4a, 4b, 4c, 5b, 5c, 5d, 5e) | 93  |
| GIRR Spring 2021 Question 4 (LOs 3i, 4a)                         | 96  |
| GIRR Spring 2021 Question 9 (LOs 3d, 3f, 3g)                     | 98  |
| GIRR Spring 2021 Question 14 (LOs 2d, 3g)                        | 100 |
| GIRR Spring 2021 Question 15 (LOs 3h, 3i)                        | 102 |
| GIRR Spring 2021 Question 19 (LOs 3e, 3g, 3j)                    | 104 |
| GIRR Fall 2021 Question 2 (LOs 3a, 3e, 3f, 3g)                   | 106 |
| GIRR Fall 2021 Question 6 (LOs 1d, 1f, 3g, 3j)                   | 108 |
| GIRR Fall 2021 Question 11 (LOs 3e, 3g)                          | 111 |
| GIRR Fall 2021 Question 12 (LOs 3f, 3h, 3i)                      | 113 |
| GIRR Fall 2021 Question 16 (LOs 2a, 3c, 3d)                      | 115 |
| GIRR Fall 2021 Question 18 (LOs 1d, 3f, 3g, 4a, 4b)              | 118 |
| GIRR Spring 2022 Question 2 (LOs 1d, 2a, 3c, 3d)                 | 121 |
| GIRR Spring 2022 Question 8 (LOs 3c, 3d, 3e, 3g)                 | 123 |
| GIRR Spring 2022 Question 15 (LOs 3e, 3g)                        | 126 |
| GIRR Spring 2022 Question 18 (LOs 3h, 3i, 3j)                    | 128 |
| GIRR Fall 2022 Question 6 (LOs 3g, 3j, 6b, 6c, 6d)               | 130 |
| GIRR Fall 2022 Question 7 (LOs 1j, 3c, 3d)                       | 134 |
| GIRR Fall 2022 Question 10 (LOs 3j)                              | 136 |
| GIRR Fall 2022 Question 13 (LOs 3h, 3i)                          | 137 |



|   | GIRR Fall 2022 Question 15 (LOs 3d, 3e, 3g)                      | 139 |
|---|------------------------------------------------------------------|-----|
|   | GIRR Fall 2022 Question 17 (LOs 3e, 3f, 3g, 3j)                  | 142 |
|   | GIRR Spring 2023 Question 3 (LOs 3e, 3g)                         | 144 |
|   | GIRR Spring 2023 Question 6 (LOs 3e, 3g)                         | 146 |
|   | GIRR Spring 2023 Question 7 (LOs 3i, 3j)                         | 148 |
|   | GIRR Spring 2023 Question 11 (LOs 3e, 3g)                        | 149 |
|   | GIRR Spring 2023 Question 13 (LOs 3c, 3d)                        | 151 |
|   | GIRR Spring 2023 Question 14 (LOs 3g, 5c, 5d)                    | 154 |
|   | GIRR Fall 2023 Question 1 (LOs 1d, 2a, 3d)                       | 156 |
|   | GIRR Fall 2023 Question 2 (LOs 3j)                               | 158 |
|   | GIRR Fall 2023 Question 5 (LOs 3g)                               | 160 |
|   | GIRR Fall 2023 Question 7 (LOs 3h, 3i)                           | 161 |
|   | GIRR Fall 2023 Question 8 (LOs 3g, 5c, 5d, 5e)                   | 163 |
|   | GIRR Fall 2023 Question 10 (LOs 3e, 3g)                          | 165 |
|   | GIRR Fall 2023 Question 13 (LOs 3e, 3f, 3g)                      | 167 |
|   | GIRR Fall 2023 Question 14 (LOs 3c, 3d)                          | 169 |
|   | GIRR Spring 2024 Question 2 (LOs 3e, 3g)                         | 171 |
|   | GIRR Spring 2024 Question 4 (LOs 3e, 3f)                         | 173 |
|   | GIRR Spring 2024 Question 7 (LOs 1d, 3e, 3f, 3g)                 | 175 |
|   | GIRR Spring 2024 Question 9 (LOs 3e, 3j)                         | 177 |
|   | GIRR Spring 2024 Question 10 (LOs 3d, 3e, 3g)                    | 178 |
|   | GIRR Spring 2024 Question 11 (LOs 3h, 3i)                        | 180 |
|   | GIRR Spring 2024 Question 12 (LOs 3g, 5c, 5d)                    | 182 |
|   | GIRR Fall 2024 Question 2 (LOs 3e, 3f, 3g)                       | 184 |
|   | GIRR Fall 2024 Question 7 (LOs 3h, 3i, 3j)                       | 186 |
|   | GIRR Fall 2024 Question 10 (LOs 2a, 3e, 3g)                      | 188 |
|   | GIRR Fall 2024 Question 12 (LOs 3f, 3g, 3j)                      | 190 |
|   | GIRR Fall 2024 Question 13 (LOs 3e, 3g)                          | 192 |
| G | I 101 – LEARNING OBJECTIVE 4                                     | 194 |
|   | GIRR Fall 2020 Question 15 (LOs 1d, 1i, 4b, 4c)                  | 195 |
|   | GIRR Spring 2021 Question 3 (LOs 3g, 4a, 4b, 4c, 5b, 5c, 5d, 5e) | 197 |
|   | GIRR Spring 2021 Question 4 (LOs 3i, 4a)                         | 200 |



|   | GIRR Fall 2021 Question 18 (LOs 1d, 3f, 3g, 4a, 4b)              | 202 |
|---|------------------------------------------------------------------|-----|
|   | GIRR Spring 2022 Question 12 (LOs 4b, 4c)                        | 205 |
|   | GIRR Fall 2022 Question 12 (LOs 4a, 4b, 4c)                      | 207 |
|   | GIRR Spring 2023 Question 9 (LOs 4a, 4b, 4c)                     | 209 |
|   | GIRR Fall 2023 Question 4 (LOs 4b)                               | 211 |
|   | GIRR Spring 2024 Question 8 (LOs 4a, 4b, 4c)                     | 213 |
|   | GIRR Fall 2024 Question 9 (LOs 4a, 4b)                           | 215 |
| G | il 101 – LEARNING OBJECTIVE 5                                    | 217 |
|   | GIRR Fall 2020 Question 16 (LOs 2d, 5b, 5e, 6g)                  | 218 |
|   | GIRR Fall 2020 Question 20 (LOs 5a, 5b, 5c, 5d, 5e)              | 220 |
|   | GIRR Spring 2021 Question 3 (LOs 3g, 4a, 4b, 4c, 5b, 5c, 5d, 5e) | 222 |
|   | GIRR Spring 2021 Question 12 (LOs 5b, 5c, 5d, 5e, 6g, 6h)        | 225 |
|   | GIRR Fall 2021 Question 4 (LOs 5b, 5e, 6d, 6e, 6g)               | 228 |
|   | GIRR Fall 2021 Question 5 (LOs 5b, 5c)                           | 230 |
|   | GIRR Spring 2022 Question 16 (LOs 5b, 5c, 5d, 5e)                | 232 |
|   | GIRR Spring 2022 Question 17 (LOs 5b, 5e, 6d, 6e, 6g, 6h)        | 234 |
|   | GIRR Fall 2022 Question 6 (LOs 3g, 3j, 6b, 6c, 6d)               | 236 |
|   | GIRR Fall 2022 Question 14 (LOs 5b, 5c, 5d, 5e, 6e, 6g, 6h)      | 240 |
|   | GIRR Fall 2022 Question 16 (LOs 5b, 5c, 5d, 5e)                  | 242 |
|   | GIRR Spring 2023 Question 5 (LOs 5b, 5c, 5d, 5e, 6g)             | 244 |
|   | GIRR Spring 2023 Question 8 (LOs 5a, 5b, 5e, 6c, 6d)             | 247 |
|   | GIRR Spring 2023 Question 14 (LOs 3g, 5c, 5d)                    | 249 |
|   | GIRR Fall 2023 Question 3 (LOs 5b, 5e, 6d)                       | 251 |
|   | GIRR Fall 2023 Question 6 (LOs 5c)                               | 253 |
|   | GIRR Fall 2023 Question 8 (LOs 3g, 5c, 5d, 5e)                   | 254 |
|   | GIRR Fall 2023 Question 11 (LOs 5b, 5c, 5d, 5e, 6a)              | 256 |
|   | GIRR Fall 2023 Question 12 (LOs 5b, 5c, 5d, 5e, 6g, 6h)          | 258 |
|   | GIRR Spring 2024 Question 3 (LOs 5b, 5c, 5e)                     | 260 |
|   | GIRR Spring 2024 Question 5 (LOs 1d, 1f, 3g, and 3j)             | 261 |
|   | GIRR Spring 2024 Question 12 (LOs 3g, 5c, 5d)                    |     |
|   | GIRR Fall 2024 Question 8 (LOs 5e)                               | 266 |
|   | GIRR Fall 2024 Question 11 (LOs 2d, 5b, 5e)                      | 267 |



| GI 101 – LEARNING OBJECTIVE 6                               | 268 |
|-------------------------------------------------------------|-----|
| GIRR Fall 2020 Question 5 (LOs 6a)                          | 269 |
| GIRR Fall 2020 Question 13 (LOs 6c, 6d)                     | 271 |
| GIRR Fall 2020 Question 16 (LOs 2d, 5b, 5e, 6g)             | 273 |
| GIRR Spring 2021 Question 12 (LOs 5b, 5c, 5d, 5e, 6g, 6h)   | 275 |
| GIRR Spring 2021 Question 16 (LOs 6c, 6d)                   | 278 |
| GIRR Spring 2021 Question 18 (LOs 6a)                       | 280 |
| GIRR Fall 2021 Question 4 (LOs 5b, 5e, 6d, 6e, 6g)          | 281 |
| GIRR Fall 2021 Question 15 (LOs 6g)                         | 283 |
| GIRR Fall 2021 Question 20 (LOs 6a)                         | 285 |
| GIRR Spring 2022 Question 10 (LOs 6a)                       | 286 |
| GIRR Spring 2022 Question 17 (LOs 5b, 5e, 6d, 6e, 6g, 6h)   | 287 |
| GIRR Fall 2022 Question 5 (LOs 6a)                          | 289 |
| GIRR Fall 2022 Question 14 (LOs 5b, 5c, 5d, 5e, 6e, 6g, 6h) | 291 |
| GIRR Spring 2023 Question 4 (LOs 6a)                        | 293 |
| GIRR Spring 2023 Question 5 (LOs 5b, 5c, 5d, 5e, 6g)        | 294 |
| GIRR Spring 2023 Question 8 (LOs 5a, 5b, 5e, 6c, 6d)        | 297 |
| GIRR Fall 2023 Question 3 (LOs 5b, 5e, 6d)                  | 299 |
| GIRR Fall 2023 Question 11 (LOs 5b, 5c, 5d, 5e, 6a)         | 301 |
| GIRR Fall 2023 Question 12 (LOs 5b, 5c, 5d, 5e, 6g, 6h)     | 303 |
| GIRR Spring 2024 Question 5 (LOs 1d, 1f, 3g, and 3j)        | 305 |
| GIRR Spring 2024 Question 6 (LOs 6a)                        | 308 |
| GIRR Fall 2024 Question 3 (LOs 1I, 6d, 6e)                  | 309 |
| GIRR Fall 2024 Question 5 (LOs 6f, 6g)                      | 311 |
| GIRR Fall 2024 Question 6 (LOs 6a)                          | 313 |



# GI 101 – LEARNING OBJECTIVE 1

#### 1. Topic: Introduction and Key Considerations

The candidate will understand the key considerations for and key concepts underlying general insurance actuarial work.



#### GIRR Fall 2020 Question 15 (LOs 1d, 1i, 4b, 4c)

#### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (1i) Describe how and why data are segregated and aggregate.
- (4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.
- (4c) Evaluate and justify selections of unpaid unallocated loss adjustment expenses based on ratio and count-based methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 4, and 23.

#### Question:

- **15.** (*4 points*) You are estimating unpaid ULAE.
- (a) (0.5 points) Describe one way a reinsurer might assess the reasonableness of an estimate of unpaid ULAE.

ANSWER:

You are given the following information for an insurance company:

|          |           |         | <b>Ratio of ULAE to Claims</b> |            |  |
|----------|-----------|---------|--------------------------------|------------|--|
| Calendar | Earned    | Paid    | Classical                      | Kittel     |  |
| Year     | Exposures | ULAE    | Paid                           | Refinement |  |
| 2017     | 7,430     | 810,000 | 7.4%                           | 7.5%       |  |
| 2018     | 7,890     | 850,000 | 7.5%                           | 7.3%       |  |
| 2019     | 8,310     | 880,000 | 7.6%                           | 7.1%       |  |

- The Kittel refinement reflects the average of actual paid and reported claims.
- (b) (0.5 points) Recommend one of the two approaches from the table above to use in estimating unpaid ULAE. Justify your recommendation.



You are given the following additional information:

|                | As of December 31, 2019 |
|----------------|-------------------------|
| Case Estimates | 3,510,000               |
| IBNR           | 1,600,000               |

- Approximately 80% of IBNR is a provision for development on known claims.
- Approximately 25% of claim department expenses relate to opening a claim file and 75% relate to maintaining and closing a claim file.
- (c) (1.5 points) Estimate unpaid ULAE as of December 31, 2019 using the approach you selected in part (b).

*The response for part (c) is to be provided in the Excel spreadsheet.* 

Unpaid ULAE as of December 31, 2018 was 270,000.

(d) (0.5 points) Determine calendar year 2019 incurred ULAE.

*The response for part (d) is to be provided in the Excel spreadsheet.* 

You work for an insurance company that writes only auto insurance. The company's practice is to set up zero case estimates for ALAE because ALAE for the company is relatively small and stable.

Your colleague recommends estimating unpaid ALAE using the same paid-to-paid approach as ULAE because there are no ALAE case estimates, the experience is stable, and auto insurance is the only line of business.

(e) (*1 point*) Critique your colleague's recommendation.



#### GIRR Fall 2021 Question 6 (LOs 1d, 1f, 3g, 3j)

#### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (1f) Demonstrate the importance of understanding key terminology and interrelationships.
- (3g) Estimate ultimate values using the methods cited in (3e).
- (3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 16 and 22.

#### **Question:**

# 6.

#### (4 points)

(a) (0.5 points) Describe what an *actuarial central estimate* represents according to U.S. ASOPs.

ANSWER:

(b) (0.5 points) Assess the validity of the following statement:

"Credibility is not utilized in projecting unpaid claims for reserving."



You are given the following information as of December 31, 2020 for a general liability line of business:

|                  |                    | Projected Ultimate Claims Based on<br>Frequency-Severity Method |               |  |  |  |
|------------------|--------------------|-----------------------------------------------------------------|---------------|--|--|--|
| Accident<br>Year | Earned<br>Premiums | Development<br>Based                                            | Claim Closure |  |  |  |
| 2015             | 7,770,781          | 5,053,162                                                       | 5,053,487     |  |  |  |
| 2016             | 8,054,874          | 5,508,456                                                       | 5,506,686     |  |  |  |
| 2017             | 8,669,122          | 5,901,592                                                       | 5,867,259     |  |  |  |
| 2018             | 9,068,601          | 6,242,941                                                       | 6,305,001     |  |  |  |
| 2019             | 9,896,451          | 6,826,075                                                       | 7,055,995     |  |  |  |
| 2020             | 10,833,340         | 7,153,796                                                       | 7,378,065     |  |  |  |

You are also given the following diagnostic results:

| Accident | <b>Reported Claim Ratios</b> |       |       |       |       |       |  |  |  |
|----------|------------------------------|-------|-------|-------|-------|-------|--|--|--|
| Year     | 12                           | 24    | 48    | 60    | 72    |       |  |  |  |
| 2015     | 52.7%                        | 58.1% | 61.3% | 63.3% | 64.4% | 65.0% |  |  |  |
| 2016     | 54.7%                        | 60.9% | 65.3% | 66.4% | 67.7% |       |  |  |  |
| 2017     | 54.9%                        | 61.3% | 65.7% | 66.5% |       |       |  |  |  |
| 2018     | 56.8%                        | 63.9% | 65.8% |       |       |       |  |  |  |
| 2019     | 56.1%                        | 63.6% |       |       |       |       |  |  |  |
| 2020     | 55.2%                        |       |       |       |       |       |  |  |  |

(c) (*1 point*) Calculate the indicated IBNR as of December 31, 2020 for each of the frequencyseverity method projections above.

The response for this part is to be provided in the Excel spreadsheet.

You are given the following IBNR estimates for an auto insurer's bodily injury liability claims:

|          | IBNR Claim Estimates (000) |            |            |             |  |  |  |  |
|----------|----------------------------|------------|------------|-------------|--|--|--|--|
| Accident | Developme                  | ent Method | Bornhuette | er Ferguson |  |  |  |  |
| Year     | Paid Reported              |            | Paid       | Reported    |  |  |  |  |
| 2016     | 2,852                      | 2,628      | 2,825      | 2,650       |  |  |  |  |
| 2017     | 4,103                      | 4,218      | 4,185      | 4,235       |  |  |  |  |
| 2018     | 4,352                      | 6,318      | 4,161      | 5,511       |  |  |  |  |
| 2019     | 8,072                      | 7,317      | 7,767      | 7,467       |  |  |  |  |
| 2020     | 11,835                     | 10,664     | 11,409     | 11,109      |  |  |  |  |

- A large claim was reported in accident year 2018.
- The case estimate on the large claim appears adequate.



- The large claim remains unpaid as of December 31, 2020.
- None of the methods have an explicit adjustment for the large claim.

Company management has asked you to recommend an accident year 2018 IBNR reserve as of December 31, 2020.

- (d) (*2 points*) Critique the appropriateness of each method as a potential IBNR selection for accident year 2018.
  - (i) Paid development method
  - (ii) Reported development method
  - (iii) Paid Bornhuetter Ferguson method
  - (iv) Reported Bornhuetter Ferguson method

The response for this part is to be provided in the Excel spreadsheet.



#### GIRR Fall 2021 Question 18 (LOs 1d, 3f, 3g, 4a, 4b)

#### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).
- (4a) Describe the key assumptions underlying ratio and count-based methods for estimating unpaid unallocated loss adjustment expenses.
- (4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 15, and 23.

#### **Question:**

### 18.

(6 points) You are projecting ultimate claims as of December 31, 2020 using the paid development method and are given the following data:

| Accident | 0   |     | ]     | Paid Cla | ims (000) | )     |       |       |
|----------|-----|-----|-------|----------|-----------|-------|-------|-------|
| Year     | 12  | 24  | 36    | 48       | 60        | 72    | 84    | 96    |
| 2013     | 162 | 517 | 866   | 1,171    | 1,402     | 1,573 | 1,716 | 1,824 |
| 2014     | 171 | 523 | 875   | 1,142    | 1,372     | 1,565 | 1,712 |       |
| 2015     | 182 | 518 | 876   | 1,169    | 1,424     | 1,610 |       |       |
| 2016     | 190 | 543 | 923   | 1,219    | 1,460     |       |       |       |
| 2017     | 198 | 540 | 1,082 | 1,391    |           |       |       |       |
| 2018     | 205 | 560 | 968   |          |           |       |       |       |
| 2019     | 211 | 573 |       |          |           |       |       |       |
| 2020     | 224 |     |       |          |           |       |       |       |

| Accident<br>Year | 12-24 | 24-36 | 36-48 | 48-60 | 60-72 | 72-84 | 84-96 |
|------------------|-------|-------|-------|-------|-------|-------|-------|
| 2013             | 3.191 | 1.675 | 1.352 | 1.197 | 1.122 | 1.091 | 1.063 |
| 2014             | 3.058 | 1.673 | 1.305 | 1.201 | 1.141 | 1.094 |       |
| 2015             | 2.846 | 1.691 | 1.334 | 1.218 | 1.131 |       |       |
| 2016             | 2.858 | 1.700 | 1.321 | 1.198 |       |       |       |
| 2017             | 2.727 | 2.004 | 1.286 |       |       |       |       |
| 2018             | 2.732 | 1.729 |       |       |       |       |       |
| 2019             | 2.716 |       |       |       |       |       |       |



Accident year 2017 includes a large claim of 150,000 paid and closed on March 15, 2019. The claim was unusual, and a similar claim is not likely to occur.

(a) (*1 point*) Select age-to-age development factors for all periods excluding the tail factor. Justify your selections.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

| Accident | Projected Ultimate Claims<br>from Reported |
|----------|--------------------------------------------|
| Year     | <b>Development Method (000)</b>            |
| 2013     | 1,975                                      |
| 2014     | 1,974                                      |
| 2015     | 2,032                                      |
| 2016     | 2,078                                      |
| 2017     | 2,234                                      |
| 2018     | 2,216                                      |
| 2019     | 2,261                                      |
| 2020     | 2,295                                      |
| Total    | 17,065                                     |

(b) (1.5 points) Derive a paid tail factor using Boor's algebraic method.

Provide the response for this part in the Excel spreadsheet.

Subsequently, the Chief Actuary provides you with an alternative tail factor of 1.072 based on industry benchmark data.

(c) (*1 point*) Calculate ultimate claims using the paid development method and the tail factor of 1.072.

Provide the response for this part in the Excel spreadsheet.

You are given the following additional information for estimating ULAE:

- Selected ultimate claims for each accident year are based on the results from the reported development method shown above (and not the paid development method).
- Actual reported claims as of December 31, 2020 are 14,660,000.

Version 2025-1



- The selected ratio of calendar year paid unallocated loss adjustment expenses (ULAE) to paid claims is 8%.
- (d) (*1 point*) Calculate the unpaid ULAE as of December 31, 2020 using the classical paid-to-paid method and a multiplier of 50%.

Provide the response for this part in the Excel spreadsheet.

(e) (*1 point*) Describe the Kittel refinement to the classical paid-to-paid method and the weakness it is designed to address.

*Provide the response for this part in the Excel spreadsheet.* 

(f) (0.5 points) Describe the Mango and Allen smoothing adjustment.

Provide the response for this part in the Excel spreadsheet.



#### GIRR Spring 2022 Question 2 (LOs 1d, 2a, 3c, 3d)

#### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (2a) Create development triangles of claims and counts from detailed claim transaction data.
- (3c) Identify the types of development triangles that can be used for investigative testing.
- (3d) Analyze development triangles for investigative testing.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 11 and 14.

#### Question:

# 2.

(7 points) You are given the following claim information evaluated as of December 31, 2021.

| Accident | Rep   | <b>Reported Claims (000)</b> |       |       |  |  |  |  |  |
|----------|-------|------------------------------|-------|-------|--|--|--|--|--|
| Year     | 12    | 12 24 36 4                   |       |       |  |  |  |  |  |
| 2018     | 1,196 | 1,525                        | 1,638 | 1,723 |  |  |  |  |  |
| 2019     | 1,269 | 1,607                        | 1,908 |       |  |  |  |  |  |
| 2020     | 1,294 | 1,707                        |       |       |  |  |  |  |  |
| 2021     | 1,451 |                              |       |       |  |  |  |  |  |

| Accident | <b>Reported Counts</b> |     |     |     |  |  |  |
|----------|------------------------|-----|-----|-----|--|--|--|
| Year     | 12                     | 24  | 36  | 48  |  |  |  |
| 2018     | 230                    | 250 | 260 | 265 |  |  |  |
| 2019     | 235                    | 255 | 265 |     |  |  |  |
| 2020     | 231                    | 251 |     |     |  |  |  |
| 2021     | 234                    |     |     |     |  |  |  |

You are also informed that the following six claim transactions were not captured in the triangles due to a system error.

| Trans<br># | Claim<br>ID | Transaction<br>Date | Transaction<br>Description     | Occurrence<br>Date | Case<br>Estimate<br>(000) | Indemnity<br>Payment<br>(000) | ALAE<br>Payment<br>(000) |
|------------|-------------|---------------------|--------------------------------|--------------------|---------------------------|-------------------------------|--------------------------|
| 1          | 1020        | May 17, 2019        | Open new claim file            | Apr. 27, 2018      | 10                        | 5                             |                          |
| 2          | 1377        | Nov. 3, 2019        | Open & close new<br>claim file | Sep. 15, 2019      |                           | 50                            | 25                       |
| 3          | 1944        | Jan. 2, 2021        | Close reported claim<br>file   | Sep. 15, 2019      | -25                       | 10                            | 5                        |
| 4          | 2135        | Feb. 28, 2021       | Change in case estimate        | Jan. 6, 2020       | 65                        |                               |                          |
| 5          | 2260        | Apr. 24, 2021       | Open new claim file            | Feb. 3, 2018       | 20                        |                               |                          |
| 6          | 2260        | June 5, 2021        | Close reported claim<br>file   | Feb. 3, 2018       | -20                       |                               | 20                       |

(a) (4 *points*) Update both development triangles shown above to include the claim transactions not captured due to the system error.

*The response for this part is to be provided in the Excel spreadsheet.* 



(b) (0.5 points) Determine calendar year 2021 reported claims.

*The response for this part is to be provided in the Excel spreadsheet.* 

Accident year 2021 paid claims and ALAE evaluated as of December 31, 2021, were 800,000.

(c) (0.5 points) Determine case reserves as of December 31, 2021, for accident year 2021 only.

The response for this part is to be provided in the Excel spreadsheet.

You are subsequently given a variety of corrected claim and count triangles and have been asked to conduct investigative tests.

- (d) (*1 point*) Describe the investigative tests you would recommend using for the following independent situations:
  - (i) The claim department implemented a new definition of claims to distinguish between reported incidents that are valid claims and incidents not covered under the insurance policy.
  - (ii) The claim department implemented a new initiative to increase their use of partial settlements.

The response for this part is to be provided in the Excel spreadsheet.

During investigative testing, you observe an increase in average reported claims, with changes greater than the rate of trend going down each column (from accident year to accident year). However, the reported counts are stable.

(e) (*1 point*) Provide two examples of company operational changes that could cause an increase in average reported claims without affecting reported counts.

The response for this part is to be provided in the Excel spreadsheet.



#### GIRR Fall 2022 Question 7 (LOs 1j, 3c, 3d)

#### **Learning Outcomes:**

- (1j) Describe qualitative information required for actuarial work.
- (3c) Identify the types of development triangles that can be used for investigative testing.
- (3d) Analyze development triangles for investigative testing.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 5 and 14.

#### **Question:**

### 7.

(4 points) You are given the following information for an investigative analysis:

| Accident | Reported Claim Frequency |       |       |       |       |       |       |       |
|----------|--------------------------|-------|-------|-------|-------|-------|-------|-------|
| Year     | 12                       | 24    | 36    | 48    | 60    | 72    | 84    | 96    |
| 2014     | 0.017                    | 0.018 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 |
| 2015     | 0.018                    | 0.019 | 0.019 | 0.019 | 0.019 | 0.018 | 0.018 |       |
| 2016     | 0.017                    | 0.018 | 0.018 | 0.018 | 0.018 | 0.018 |       |       |
| 2017     | 0.018                    | 0.019 | 0.020 | 0.020 | 0.019 |       |       |       |
| 2018     | 0.015                    | 0.016 | 0.017 | 0.018 |       |       |       |       |
| 2019     | 0.015                    | 0.015 | 0.016 |       |       |       |       |       |
| 2020     | 0.014                    | 0.015 |       |       |       |       |       |       |
| 2021     | 0.013                    |       |       |       |       |       |       |       |

You noticed that the claim frequency has been decreasing since accident year 2018.

(a) (1 point) Describe two operational changes that could have caused this decrease.

#### ANSWER:

(b) (0.5 points) Describe one external environmental change that could have caused this decrease.



| Accident | Ratios of Paid Claims to Reported Claims |       |       |       |       |       |       |       |
|----------|------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Year     | 12                                       | 24    | 36    | 48    | 60    | 72    | 84    | 96    |
| 2014     | 0.205                                    | 0.363 | 0.454 | 0.575 | 0.670 | 0.829 | 0.902 | 0.960 |
| 2015     | 0.187                                    | 0.357 | 0.425 | 0.570 | 0.667 | 0.813 | 0.868 |       |
| 2016     | 0.213                                    | 0.367 | 0.442 | 0.559 | 0.656 | 0.772 |       |       |
| 2017     | 0.198                                    | 0.359 | 0.438 | 0.551 | 0.614 |       |       |       |
| 2018     | 0.196                                    | 0.373 | 0.447 | 0.490 |       |       |       |       |
| 2019     | 0.190                                    | 0.365 | 0.375 |       |       |       |       |       |
| 2020     | 0.203                                    | 0.295 |       |       |       |       |       |       |
| 2021     | 0.150                                    |       |       |       |       |       |       |       |

You are given the following diagnostic triangle for a different line of business:

(c) (0.5 points) Identify a change in pattern in this triangle.

ANSWER:

(d) (*1 point*) Describe two possible operational changes that could have caused the pattern change identified in part (b).

ANSWER:

(e) (*1 point*) Describe an additional test to further investigate the change in pattern identified in part (b).



#### GIRR Fall 2022 Question 18 (LOs 1d, 2a)

#### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (2a) Create development triangles of claims and counts from detailed claim transaction data.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3 and 11.

#### **Question:**

### 18.

(5 points) You are given the following claims-made data for Nurses Professional Liability coverage from the claims department.

|        | Nurses - Professional Liability |          |              |              |              |           |       |  |
|--------|---------------------------------|----------|--------------|--------------|--------------|-----------|-------|--|
| Report |                                 | Incremen | tal Paid Cla | nims (000) D | ouring Caler | ndar Year |       |  |
| Year   | 2015                            | 2016     | 2017         | 2018         | 2019         | 2020      | 2021  |  |
| 2015   | 330                             | 1,380    | 1,315        | 577          | 118          | 21        | 5     |  |
| 2016   |                                 | 351      | 1,855        | 1,479        | 428          | 91        | 8     |  |
| 2017   |                                 |          | 436          | 1,489        | 1,252        | 933       | 168   |  |
| 2018   |                                 |          |              | 423          | 1,592        | 1,182     | 670   |  |
| 2019   |                                 |          |              |              | 449          | 1,675     | 1,540 |  |
| 2020   |                                 |          |              |              |              | 354       | 1,709 |  |
| 2021   |                                 |          |              |              |              |           | 584   |  |

|                |                  | Case Estimates (000) at Evaluation Date |                  |                  |                  |                  |                  |  |  |
|----------------|------------------|-----------------------------------------|------------------|------------------|------------------|------------------|------------------|--|--|
| Report<br>Year | Dec. 31,<br>2015 | Dec. 31,<br>2016                        | Dec. 31,<br>2017 | Dec. 31,<br>2018 | Dec. 31,<br>2019 | Dec. 31,<br>2020 | Dec. 31,<br>2021 |  |  |
| 2015           | 1,169            | 1,368                                   | 362              | 116              | 21               | 5                | 0                |  |  |
| 2016           |                  | 1,321                                   | 1,348            | 222              | 94               | 23               | 16               |  |  |
| 2017           |                  |                                         | 1,456            | 1,378            | 689              | 177              | 18               |  |  |
| 2018           |                  |                                         |                  | 1,404            | 1,349            | 520              | 203              |  |  |
| 2019           |                  |                                         |                  |                  | 1,247            | 1,701            | 553              |  |  |
| 2020           |                  |                                         |                  |                  |                  | 1,543            | 1,711            |  |  |
| 2021           |                  |                                         |                  |                  |                  |                  | 1,350            |  |  |

(a) (*1 point*) Construct a cumulative reported claim development triangle by report year.

Provide the response for this part in the Excel spreadsheet.



(b) (0.5 points) Calculate the calendar year 2020 reported claims for the coverage above.

*Provide the response for this part in the Excel spreadsheet.* 

You are subsequently informed that the following six claim transactions were not captured in the previous dataset.

| Trans.<br># | Transaction<br>Date | Transaction<br>Description                                           | Occurrence<br>Date | Report<br>Date | Change<br>in Case<br>Estimate<br>(000) | Indemnity<br>Payment<br>(000) |
|-------------|---------------------|----------------------------------------------------------------------|--------------------|----------------|----------------------------------------|-------------------------------|
| 1           | Aug. 5, 2019        | subrogation recovery                                                 | May 6, 2017        | July 2, 2018   |                                        | -15                           |
| 2           | Dec. 19, 2019       | payment on reported claim file                                       | Mar. 1, 2016       | Aug. 27, 2017  | -45                                    | 45                            |
| 3           | Dec. 28, 2019       | open and close new claim file                                        | Oct. 17, 2018      | Dec. 23, 2019  |                                        | 10                            |
| 4           | Jan. 28, 2020       | payment & change in<br>case estimate                                 | Aug. 1, 2015       | Nov. 28, 2016  | -20                                    | 15                            |
| 5           | Feb. 4, 2021        | open new claim file                                                  | Sept. 12, 2020     | Feb. 3, 2021   | 30                                     |                               |
| 6           | May 11, 2021        | payment on reported<br>claim file with no<br>change in case estimate | June 14, 2017      | Apr. 19, 2020  |                                        | 5                             |

(c) (*3 points*) Update the reported claim development triangle from part (a) to include the missing claim transactions.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following carried IBNR reserves for the Nurses coverage above:

| IBNR Reserves (000)     |       |  |  |  |  |
|-------------------------|-------|--|--|--|--|
| December 31, 2020 3,900 |       |  |  |  |  |
| December 31, 2021       | 4,100 |  |  |  |  |

(d) (0.5 points) Calculate the calendar year 2021 incurred claims.

*Provide the response for this part in the Excel spreadsheet.* 



#### GIRR Spring 2023 Question 2 (LOs 1g, 2a)

#### **Learning Outcomes:**

- (1g) Identify different types of data used for actuarial work.
- (2a) Create development triangles of claims and counts from detailed claim transaction data.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 4 and 11.

#### **Question:**

# 2.

(5 points) You are constructing claims data files for a ratemaking analysis.

(a) (*1 point*) Provide one advantage and one disadvantage to aggregating claims data by policy year.

ANSWER:

(b) (0.5 points) Provide one disadvantage to aggregating claims data by report year.

ANSWER:

You are given the following claims data aggregated by accident year:

| Accident |           | Reported Claims |           |           |           |           |  |  |  |
|----------|-----------|-----------------|-----------|-----------|-----------|-----------|--|--|--|
| Year     | 12        | 24              | 36        | 48        | 60        | 72        |  |  |  |
| 2017     | 2,147,785 | 3,025,674       | 3,620,901 | 4,136,684 | 4,362,359 | 4,382,594 |  |  |  |
| 2018     | 2,219,814 | 3,071,925       | 3,876,926 | 4,331,668 | 4,596,920 |           |  |  |  |
| 2019     | 2,342,602 | 4,154,013       | 4,922,135 | 5,074,225 |           |           |  |  |  |
| 2020     | 2,591,328 | 3,398,123       | 4,339,405 |           |           |           |  |  |  |
| 2021     | 2,582,962 | 3,768,518       |           |           |           |           |  |  |  |
| 2022     | 2,735,738 |                 |           |           |           |           |  |  |  |



| Accident | Paid Claims |           |           |           |           |           |  |  |
|----------|-------------|-----------|-----------|-----------|-----------|-----------|--|--|
| Year     | 12          | 24        | 36        | 48        | 60        | 72        |  |  |
| 2017     | 1,249,954   | 2,244,328 | 3,004,204 | 3,728,241 | 4,161,007 | 4,367,084 |  |  |
| 2018     | 1,271,502   | 2,218,377 | 3,235,509 | 3,896,228 | 4,382,244 |           |  |  |
| 2019     | 1,346,283   | 2,368,791 | 3,339,691 | 4,154,460 |           |           |  |  |
| 2020     | 1,525,699   | 2,505,764 | 3,625,546 |           |           |           |  |  |
| 2021     | 1,435,742   | 2,756,999 |           |           |           |           |  |  |
| 2022     | 1,589,295   |           |           |           |           |           |  |  |

| Accident |     | Reported Counts |       |       |       |       |  |
|----------|-----|-----------------|-------|-------|-------|-------|--|
| Year     | 12  | 24              | 36    | 48    | 60    | 72    |  |
| 2017     | 729 | 895             | 998   | 1,082 | 1,119 | 1,122 |  |
| 2018     | 727 | 900             | 1,019 | 1,089 | 1,130 |       |  |
| 2019     | 743 | 911             | 1,022 | 1,102 |       |       |  |
| 2020     | 765 | 902             | 1,042 |       |       |       |  |
| 2021     | 763 | 939             |       |       |       |       |  |
| 2022     | 767 |                 |       |       |       |       |  |

| Accident |     | Closed Counts |     |       |       |       |  |
|----------|-----|---------------|-----|-------|-------|-------|--|
| Year     | 12  | 24            | 36  | 48    | 60    | 72    |  |
| 2017     | 466 | 697           | 855 | 991   | 1,075 | 1,118 |  |
| 2018     | 469 | 696           | 877 | 997   | 1,085 |       |  |
| 2019     | 474 | 706           | 874 | 1,007 |       |       |  |
| 2020     | 489 | 700           | 896 |       |       |       |  |
| 2021     | 491 | 727           |     |       |       |       |  |
| 2022     | 494 |               |     |       |       |       |  |

It was subsequently discovered that a claim file was miscoded in the system as follows:

|                            | Original     |          | Correc        | ted     |
|----------------------------|--------------|----------|---------------|---------|
| Transaction                | Date         | Amount   | Date          | Amount  |
| Accident Date              | Sep. 22,     | n/a      | Sep. 22,      | n/a     |
|                            | 2019         |          | 2019          |         |
| Claim reported to company, | Nov. 1, 2020 | 900,000  | Nov. 1, 2019  | 90,000  |
| case estimate established  | 1000 1, 2020 | 700,000  | 1100. 1, 2017 | 70,000  |
| Claim Payment              | Dec 1, 2020  | 1,500    | Dec 1, 2020   | 1,500   |
| Claim Payment              | Jul. 1, 2021 | 1,000    | Jul. 1, 2021  | 1,000   |
| Claim Payment              | Mar. 1, 2022 | 57,500   | Mar. 1, 2022  | 57,500  |
| Change in case estimate    | Mar. 1, 2022 | -500,000 | Mar. 1, 2022  | -50,000 |



(c) (2.5 points) Construct new data triangles with corrections for this claim file.

*Provide the response for this part in the Excel spreadsheet.* 

The calendar year 2022 changes for accident years 2016 and prior were:

- 15,700 in paid claims
- -8,500 in case estimates
- (d) (1 point) Calculate calendar year 2022 reported claims, based on corrected data.

Provide the response for this part in the Excel spreadsheet.



#### GIRR Fall 2023 Question 1 (LOs 1d, 2a, 3d)

#### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (2a) Create development triangles of claims and counts from detailed claim transaction data.
- (3d) Analyze development triangles for investigative testing.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 11, and 14.

#### **Question:**

# 1.

(6 points) An insurer began writing policies in 2019. You are given the following:

| Accident | Reported Claims (000) |        |       |       |  |  |
|----------|-----------------------|--------|-------|-------|--|--|
| Year     | 12                    | 24     | 36    | 48    |  |  |
| 2019     | 1,148                 | 1,783  | 2,526 | 3,410 |  |  |
| 2020     | 3,427                 | 4,893  | 6,847 |       |  |  |
| 2021     | 5,710                 | 12,170 |       |       |  |  |
| 2022     | 8,035                 |        |       |       |  |  |

| Accident | Paid Claims (000) |       |       |       |  |  |
|----------|-------------------|-------|-------|-------|--|--|
| Year     | 12                | 24    | 36    | 48    |  |  |
| 2019     | 138               | 466   | 882   | 1,425 |  |  |
| 2020     | 413               | 1,269 | 3,148 |       |  |  |
| 2021     | 689               | 4,140 |       |       |  |  |
| 2022     | 1,286             |       |       |       |  |  |

It was subsequently discovered that the following claims and their transactions were not captured in the triangles.

| Claim<br>ID | Occurrence    |
|-------------|---------------|
| 10          | Date          |
| 100         | Oct. 11, 2019 |
| 200         | Jan. 5, 2020  |
| 300         | Feb. 28, 2021 |



| Trans<br># | Claim<br>ID | Transaction<br>Date | Transaction Description           | Change in Case<br>Estimate (000) | Payment<br>(000) |
|------------|-------------|---------------------|-----------------------------------|----------------------------------|------------------|
| 1          | 200         | Feb. 7, 2020        | Open new claim file               | 17                               |                  |
| 2          | 100         | May 12, 2020        | Open new claim file               | 5                                |                  |
| 3          | 300         | Mar. 8, 2021        | Open new claim file               | 29                               |                  |
| 4          | 100         | Jul. 22, 2021       | Payment & change in case estimate | -5                               | 6                |
| 5          | 200         | Nov. 13, 2021       | Payment & change in case estimate | -13                              | 6                |
| 6          | 300         | Jun. 4, 2022        | Payment                           |                                  | 11               |

- (a) (*3 points*) Update both triangles to include the missing transactions.
- (b) (*1 point*) Identify an anomaly in the triangle of ratios of paid claims to reported claims based on the corrected triangles from part (a).
- (c) (*1 point*) Describe two operational changes that could have caused the anomaly you identified in part (b).

You are given the following carried IBNR reserves:

| IBNR Reserves (000) |        |  |  |  |
|---------------------|--------|--|--|--|
| Dec 31, 2019        | 4,591  |  |  |  |
| Dec 31, 2020        | 17,722 |  |  |  |
| Dec 31, 2021        | 38,476 |  |  |  |
| Dec 31, 2022        | 61,299 |  |  |  |

(d) (*1 point*) Calculate incurred claims for calendar year 2021.



#### GIRR Spring 2024 Question 7 (LOs 1d, 3e, 3f, 3g)

#### Learning Outcomes:

- (1d) Understand the components of ultimate values.
- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 15, 17, 18.

#### **Question:**

### 7.

#### Provide the response for this question in the Excel spreadsheet.

(5 points) You are estimating IBNR for a line of business using the following information:

| Accident<br>Year<br>(AY) | Historical<br>Earned<br>Premiums | Premium<br>On-Level<br>Factor | Cumulative<br>Paid<br>Claims | Case<br>Estimates |
|--------------------------|----------------------------------|-------------------------------|------------------------------|-------------------|
| 2021                     | 10,119,409                       | 1.034                         | 5,155,384                    | 457,851           |
| 2022                     | 10,552,425                       | 1.020                         | 3,785,833                    | 896,859           |
| 2023                     | 10,850,455                       | 1.000                         | 2,247,631                    | 1,306,801         |

| <b>Reported Claim Development Factors by Development Months</b> |       |       |       |       |         |
|-----------------------------------------------------------------|-------|-------|-------|-------|---------|
| 12-24                                                           | 24-36 | 36-48 | 48-60 | 60-72 | 72-Ult. |
| 1.445                                                           | 1.271 | 1.154 | 1.073 | 1.014 | 1.000   |

- The expected claim ratio at the 2023 cost level is 76.0%.
- The annual claim ratio trend is 6.1%.
- The annual premium trend is 0%.



- (a) (3.5 points) Calculate the IBNR for each AY as of December 31, 2023 using:
  - (i) the Development method,
  - (ii) the Bornhuetter Ferguson method, and
  - (iii) two iterations of the Benktander method.
- (b) (*1 point*) Explain if this business is performing better or worse than expected for AY 2023 using the methods above.

One of the weaknesses of the Benktander method is that there is no clear guidance with respect to the appropriate number of iterations to perform.

(c) (0.5 points) Identify one other weakness of the Benktander method.



#### GIRR Fall 2024 Question 3 (LOs 11, 6d, 6e)

#### **Learning Outcomes:**

- (11) Understand credibility as used for actuarial work.
- (6d) Calculate loadings for catastrophes and large claims.
- (6e) Apply loadings for catastrophes and large claims in ratemaking.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 6 and 31.

#### Question:

# 3.

Provide the response for this question in the Excel spreadsheet.

(5 points) Credibility procedures often require the actuary to exercise professional judgment as the assignment of a credibility value is frequently not a precise mathematical exercise. One consideration in assigning credibility is the volume of claims in the experience set of data.

(a) (*1 point*) Identify two other considerations in assigning credibility to an experience set of data.

You are estimating ultimate property claims for ratemaking purposes for State Z. The claims experience of State Z is not fully credible for calculating trend. You are given the following:

| Accident<br>Year | Selected Ultimate Claims<br>at 1,000,000 Limit | Selected Ultimate Claims<br>at Total Limits |
|------------------|------------------------------------------------|---------------------------------------------|
| 2021             | 4,298,400                                      | 4,483,200                                   |
| 2022             | 4,368,900                                      | 4,607,900                                   |
| 2023             | 4,890,200                                      | 5,097,900                                   |

| Selections                     | 1,000,000 Limit | <b>Total Limits</b> |
|--------------------------------|-----------------|---------------------|
| Severity Trend State Z         | 7.0%            | 8.6%                |
| Pure Premium Trend State Z     | 5.5%            | 6.0%                |
| Credibility State Z            | 70%             | 50%                 |
| Countrywide Severity Trend     | 6.0%            | 7.0%                |
| Countrywide Pure Premium Trend | 4.0%            | 5.0%                |



• The claim trend period for accident year 2023 is 32 months.

You are given the following loadings for large claims for the 500,000 to 1 million limit:

| Accident<br>Year | 500,000 to<br>1 Million Limit |
|------------------|-------------------------------|
| 2021             | 1.196                         |
| 2022             | 1.165                         |
| 2023             | 1.185                         |

- (b) (3 points) Calculate the loadings for 500,000 to total limits for each accident year.
- (c) (*1 point*) Recommend a loading for 500,000 to total limits for ratemaking purposes. Justify your recommendation.



#### GIRR Fall 2024 Question 4 (LOs 1d, 2a, 2c)

#### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (2a) Create development triangles of claims and counts from detailed claim transaction data.
- (2c) Calculate written, earned, in-force and unearned premiums for portfolios of policies with various policy terms and earnings patterns.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 11, and 12.

#### **Question:**

### **4**.

| Provide the respons  | e for this | auestion in | the Excel | spreadsheet. |
|----------------------|------------|-------------|-----------|--------------|
| I TOVIAL INC TESPONS |            | guesuon m   | me Lacci  | spreudsneet. |

(6 points) ABC Insurance is a new insurer that started writing business in 2021. You are given:

- One policy was written on the first day of each month from April 2021 to March 2024, for a total of 36 policies.
- Each policy is a two-year policy.
- The two-year premium of 120 per policy is recorded on the effective date of each policy.
- There are no cancellations or changes to policies.
- None of the policies were renewed upon expiration.
- Policies are earned evenly through the policy term.
- The earned premiums are:

| Calendar<br>Year | Earned<br>Premiums |
|------------------|--------------------|
| 2021             | 225                |
| 2022             | 930                |
| 2023             | 1,425              |

- (a) (2 points) Verify the earned premiums for calendar years 2021, 2022, and 2023.
- (b) (1 point) Calculate the unearned premiums as of each year-end for 2021, 2022, and 2023.
- (c) (0.5 points) Calculate in-force premiums as of December 31, 2023.

Version 2025-1



DEF Insurance is another insurer. DEF's total in-force premiums are 50% of ABC's total in-force premiums. A market analyst is comparing total in-force premiums and concludes that DEF has lower written premium volume than ABC Insurance.

(d) (0.5 points) Describe a scenario where the market analyst's conclusion would be incorrect.

The following claim development triangle is given for ABC Insurance:

| Accident | <b>Reported Claims</b> |     |     |  |
|----------|------------------------|-----|-----|--|
| Year     | 12                     | 24  | 36  |  |
| 2021     | 68                     | 108 | 135 |  |
| 2022     | 279                    | 446 |     |  |
| 2023     | 428                    |     |     |  |

(e) (*1 point*) Calculate the reported claim ratios for each of calendar years 2022 and 2023.

You are also given:

- There is no development beyond 36 months.
- Ultimate claim ratios for accident years 2022 and 2023 are the same as accident year 2021.
- (f) (*1 point*) Calculate IBNR for accident years 2022 and 2023.



# GI 101 – LEARNING OBJECTIVE 2

2. Topic: Preparing Claims and Exposure Data for Actuarial Work

The candidate will demonstrate the ability to prepare claims and exposure data for general insurance actuarial work.



#### GIRR Fall 2020 Question 1 (LOs 2a)

#### **Learning Outcomes:**

(2a) Create development triangles of claims and counts from detailed claim transaction data.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 11.

#### Question:

1. (4 points) You are given the following information for a line of business that started in 2016:

| Accident | Reported Claims (000) |          |        |        |  |
|----------|-----------------------|----------|--------|--------|--|
| Year     | 12                    | 12 24 36 |        |        |  |
| 2016     | 12,800                | 16,380   | 18,350 | 19,080 |  |
| 2017     | 13,700                | 17,810   | 19,590 |        |  |
| 2018     | 15,200                | 19,150   |        |        |  |
| 2019     | 14,800                |          |        |        |  |

| Accident | Paid Claims (000) |        |        |        |  |
|----------|-------------------|--------|--------|--------|--|
| Year     | 12                | 36     | 48     |        |  |
| 2016     | 9,730             | 14,580 | 17,430 | 18,300 |  |
| 2017     | 9,450             | 15,320 | 18,410 |        |  |
| 2018     | 10,940            | 16,090 |        |        |  |
| 2019     | 11,100            |        |        |        |  |

| Accident | Case Estimates (000) |          |       |     |  |  |
|----------|----------------------|----------|-------|-----|--|--|
| Year     | 12                   | 12 24 36 |       |     |  |  |
| 2016     | 3,070                | 1,800    | 920   | 380 |  |  |
| 2017     | 4,250                | 2,490    | 1,140 |     |  |  |
| 2018     | 4,260                | 2,980    |       |     |  |  |
| 2019     | 3,620                |          |       |     |  |  |

(a) (*1 point*) Identify the inconsistencies in the data triangles.

The response for part (a) is to be provided in the Excel spreadsheet.



(b) (0.5 points) Provide one potential cause for the data issue identified in part (a).

ANSWER:

You are provided with the following additional transactions from a single claim that occurred on March 1, 2017 and was not included in the above data:

|   | Transaction Description           | Transaction<br>Date | Case<br>Estimate | Indemnity<br>Payment | ALAE<br>Payment |
|---|-----------------------------------|---------------------|------------------|----------------------|-----------------|
| 1 | Open new claim file               | May 1, 2017         | 42,000           | 0                    | 0               |
| 2 | Payment on reported<br>claim file | Dec. 1, 2017        | 30,000           | 10,000               | 1,000           |
| 3 | Payment on reported<br>claim file | Jun. 1, 2018        | 20,000           | 12,000               | 2,000           |

(c) (1.5 points) Construct revised paid claims and case estimates triangles incorporating this additional information.

*The response for part (c) is to be provided in the Excel spreadsheet.* 

(d) (*1 point*) Calculate the calendar year 2018 reported claims using the revised triangles from part (c).

*The response for part (d) is to be provided in the Excel spreadsheet.* 



#### GIRR Fall 2020 Question 9 (LOs 2d, 3e, 3f, 3g)

#### **Learning Outcomes:**

- (2d) Adjust historical earned premiums to current rate levels.
- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13, 15 and 19.

#### **Question:**

### **9.** (8 points)

(a) (0.5 points) Describe why premium on-level factors are typically used in the Cape Cod method but not in the Bornhuetter Ferguson method.

ANSWER:

(b) (0.5 points) Describe a situation in which an actuary may choose to derive an adjusted expected pure premium instead of an adjusted expected claim ratio when using the Cape Cod method.

ANSWER:

In selecting a decay factor for the Generalized Cape Cod method, actuaries should consider their confidence in the development method.

(c) (*1 point*) Explain why confidence in the development method is a consideration in selecting the decay factor.



You have been asked to project ultimate claims using the Cape Cod method and have been given the following information as of December 31, 2019:

| Accident<br>Year | Earned<br>Premiums<br>(000) | Actual<br>Reported<br>Claims<br>(000) | Reported<br>Cumulative<br>Development<br>Factors |
|------------------|-----------------------------|---------------------------------------|--------------------------------------------------|
| 2015             | 16,100                      | 11,150                                | 1.030                                            |
| 2016             | 17,600                      | 11,380                                | 1.055                                            |
| 2017             | 18,300                      | 11,190                                | 1.100                                            |
| 2018             | 19,800                      | 11,470                                | 1.300                                            |
| 2019             | 21,600                      | 9,040                                 | 1.700                                            |

- All policies are written for 12-month policy terms.
- The following rate changes have occurred:
  - 6% effective January 1, 2016
  - 5% effective July 1, 2018
- The annual claim ratio trend is 5%.
- Tort reform resulted in a claim decrease of 10% for all accidents occurring on or after July 1, 2016.
- Accident year 2018 includes one unusually large claim of 600,000 which has been recorded as a case estimate.
- (d) (*2 points*) Calculate premium on-level factors for each accident year, to use in the Cape Cod method as of December 31, 2019.

*The response for part (d) is to be provided in the Excel spreadsheet.* 

(e) (4 points) Calculate the projected ultimate claims for each accident year using the Cape Cod method.

*The response for part (e) is to be provided in the Excel spreadsheet.* 



## GIRR Fall 2020 Question 16 (LOs 2d, 5b, 5e, 6g)

#### **Learning Outcomes:**

- (2d) Adjust historical earned premiums to current rate levels.
- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13, 26, 27, and 32.

#### Question:

**16.** (*7 points*) You are conducting a ratemaking analysis for an automobile line of business and are given the following information:

| Rate Change History |          |  |  |  |  |
|---------------------|----------|--|--|--|--|
| Effective Date      | Rate     |  |  |  |  |
| of Rate Change      | Change % |  |  |  |  |
| July 1, 2015        | 8.0%     |  |  |  |  |
| January 1, 2017     | 10.0%    |  |  |  |  |
| January 1, 2019     | 5.0%     |  |  |  |  |

- Premiums are written and earned evenly throughout the year.
- All policies are written for 12-month policy terms.
- In addition to the above rate changes, there was a regulation change where all premiums in force on July 1, 2017 were required to be reduced by 20%.
- (a) (*2 points*) Calculate premium on-level factors for accident years 2015-2019 to use for ratemaking purposes.

*The response for part (a) is to be provided in the Excel spreadsheet.* 

You are given the following additional information:



| Accident<br>Year | Earned<br>Premiums | Ultimate<br>Claims |
|------------------|--------------------|--------------------|
| 2015             | 11,755,570         | 8,130,150          |
| 2016             | 11,864,520         | 7,970,110          |
| 2017             | 12,406,530         | 7,781,380          |
| 2018             | 12,492,860         | 8,001,680          |
| 2019             | 12,394,530         | 7,995,960          |

- The annual premium trend is 1%.
- The annual pure premium trend is 4%.
- The new rates will be effective November 1, 2020 through October 31, 2021.
- The historical data is considered fully credible for ratemaking purposes.
- The regulation change which reduced premiums also reduced claim costs by 20% for all accidents occurring on or after July 1, 2017.
- (b) (2.5 points) Calculate the trended on-level claim ratios for each accident year.

The response for part (b) is to be provided in the Excel spreadsheet.

(c) (*1 point*) Recommend a trended claim ratio to use for ratemaking. Justify your recommendation.

The response for part (c) is to be provided in the Excel spreadsheet.

You are given the following additional information:

- The ratio of ULAE to claims is 10%.
- The ratio of fixed expenses to premiums at current rates is 6%.
- The ratio of variable expenses to premiums is 19%.
- The ratio of profit and contingencies to premiums is 5%.
- (d) (0.5 points) Calculate the indicated rate change.

*The response for part (d) is to be provided in the Excel spreadsheet.* 

The purpose of the legislative change effective July 1, 2017 was to reduce increases in premiums arising from poor industry claims experience. As a result, management questions your required increase of 5% in 2019.

(e) (*1 point*) Explain why an indicated rate increase of 5% is not necessarily indicative of deteriorating experience.

ANSWER:



### GIRR Spring 2021 Question 1 (LOs 2c, 2d)

#### **Learning Outcomes:**

- (2c) Calculate written, earned, in-force and unearned premiums for portfolios of policies with various policy terms and earnings patterns.
- (2d) Adjust historical earned premiums to current rate levels.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 12 & 13.

#### Question:

## 1.

(4 points) You are calculating on-level earned premiums for a line of business and are given the following information:

- All policies written on or before December 31, 2017 were 6-month policies. These policies were written uniformly throughout the year.
- All policies written or renewed after December 31, 2017 are 12-month policies.
- All new policies are written uniformly throughout the year.
- All policies are earned uniformly through the policy period.
- As of December 31, 2017, there were 2,500 policies in force, with an average annualized premium of 750.
- During calendar year 2018:
  - o 80% of the policies in force on December 31, 2017 renewed in 2018, and
  - o 2,750 new policies were written in 2018 with an average annualized premium of 780.
- The following historical rate changes were made:
  - 4% increase effective January 1, 2018, and
  - o 5% increase effective July 1, 2020.
- (a) (*3 points*) Calculate the 2018 earned premium.

*Provide the response for this part in the Excel spreadsheet.* 

(b) (1 point) Calculate the 2018 on-level earned premium to use for ratemaking.

*Provide the response for this part in the Excel spreadsheet.* 

Version 2025-1



## GIRR Fall 2021 Question 1 (LOs 2c, 2d)

#### **Learning Outcomes:**

- (2c) Calculate written, earned, in-force and unearned premiums for portfolios of policies with various policy terms and earnings patterns.
- (2d) Adjust historical earned premiums to current rate levels.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 12 and 13.

#### Question:

# 1.

(5 points) You are analyzing the following policies:

- Policy #1: 12-month policy first written on November 1, 2019 for a premium of 2,100, renewed in 2020, and in force on December 31, 2020.
- Policy #2: 6-month policy first written on February 1, 2020 for a premium of 720, renewed in 2020, and in force on December 31, 2020.
- Policy #3: 12-month policy first written on April 1, 2020 for a premium of 1,800 and cancelled on November 30, 2020.

There was a premium level increase of 5% for each policy written or renewed after September 1, 2020. All rating characteristics remained the same for each policy at each renewal.

(a) (*1 point*) Calculate the 2020 calendar year total written premiums.

*Provide the response for this part in the Excel spreadsheet.* 

(b) (1.5 points) Calculate the 2020 calendar year total earned premiums.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (*1 point*) Calculate the total unearned premiums as of December 31, 2020.



You are calculating 2020 total earned premiums adjusted to the current rate level.

- (d) (1 point) Explain why the parallelogram approach would be inaccurate for this calculation.
  Provide the response for this part in the Excel spreadsheet.
- (e) (0.5 points) Calculate the 2020 total earned premiums adjusted to the current rate level.



## GIRR Fall 2021 Question 6 (LOs 2d, 3g)

### **Learning Outcomes:**

- (2d) Adjust historical earned premiums to current rate levels.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13, 17, and 19.

#### **Question:**

## 14.

| (8 points) You a | re given the following information for estimating ultimate claims as of December | r |
|------------------|----------------------------------------------------------------------------------|---|
| 31, 2020:        |                                                                                  |   |

| Accident<br>Year | Earned<br>Premiums | Paid Claims as of<br>December 31, 2020 | Cumulative<br>Development<br>Factors | Projected Ultimate<br>Claims from<br>Development Method |
|------------------|--------------------|----------------------------------------|--------------------------------------|---------------------------------------------------------|
| 2011             | 5,787,959          | 4,930,400                              | 1.036                                | 5,107,894                                               |
| 2012             | 5,275,346          | 4,273,000                              | 1.081                                | 4,619,113                                               |
| 2013             | 4,875,955          | 2,896,000                              | 1.156                                | 3,347,776                                               |
| 2014             | 4,823,604          | 2,864,600                              | 1.279                                | 3,663,823                                               |
| 2015             | 5,128,880          | 2,447,000                              | 1.424                                | 3,484,528                                               |
| 2016             | 5,398,707          | 1,780,460                              | 1.803                                | 3,210,169                                               |
| 2017             | 5,175,419          | 1,395,000                              | 2.530                                | 3,529,350                                               |
| 2018             | 4,771,338          | 829,600                                | 3.801                                | 3,153,310                                               |
| 2019             | 4,563,448          | 396,900                                | 7.316                                | 2,903,720                                               |
| 2020             | 4,919,527          | 180,900                                | 22.168                               | 4,010,191                                               |

| Rate Change History   |             |  |  |  |  |
|-----------------------|-------------|--|--|--|--|
| <b>Effective Date</b> | Rate Change |  |  |  |  |
| January 1, 2013       | 6%          |  |  |  |  |
| July 1, 2016          | -3%         |  |  |  |  |
| January 1, 2020       | 5%          |  |  |  |  |

- All policies are annual and are written and earned evenly throughout the year.
- Tort reform resulted in an estimated claim decrease of 20% for all accidents occurring on or after July 1, 2014.
- The annual claim trend is 0%.



(a) (1.5 points) Calculate premium on-level factors for all accident years for projecting claim ratios as of December 31, 2020.

The response for this part is to be provided in the Excel spreadsheet.

(b) (3.5 points) Calculate projected ultimate claims for all accident years using the expected method.

The response for this part is to be provided in the Excel spreadsheet.

(c) (*3 points*) Calculate projected ultimate claims for all accident years using the Cape Cod method.

*The response for this part is to be provided in the Excel spreadsheet* 



### GIRR Fall 2021 Question 16 (LOs 2a, 3c, 3d)

#### **Learning Outcomes:**

- (2a) Create development triangles of claims and counts from detailed claim transaction data.
- (3c) Identify the types of development triangles that can be used for investigative testing.
- (3d) Analyze development triangles for investigative testing.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 11 and 14.

#### Question:

# 16.

#### (7 points)

(a) (0.5 points) Define "maturity age" in the context of a claim development triangle.

ANSWER:

You are given the following claim information.

| Claim     | Incremental Paid Claims |        |        |        |        |        |  |  |  |
|-----------|-------------------------|--------|--------|--------|--------|--------|--|--|--|
| ID        | 2018H1                  | 2018H2 | 2019H1 | 2019H2 | 2020H1 | 2020H2 |  |  |  |
| Occurrent | Occurrence Year: 2018   |        |        |        |        |        |  |  |  |
| 1         | 0                       | 100    | 250    | 0      | 0      | 75     |  |  |  |
| 2         | 50                      |        |        |        |        |        |  |  |  |
| 3         |                         |        |        | 0      | 55     | 0      |  |  |  |
| 4         |                         |        |        |        |        |        |  |  |  |
| Occurrent | ce Year: 2              | 019    |        |        |        |        |  |  |  |
| 5         |                         |        | 190    | 0      | 30     |        |  |  |  |
| 6         |                         |        |        | 0      | 0      |        |  |  |  |
| 7         |                         |        | 75     | 0      | 0      | 185    |  |  |  |
| Occurrent | Occurrence Year: 2020   |        |        |        |        |        |  |  |  |
| 8         |                         |        |        |        | 0      | 0      |  |  |  |
| 9         |                         |        |        |        | 0      | 100    |  |  |  |
| 10        |                         |        |        |        | 0      | 175    |  |  |  |



| Claim    | Case Estimates at the End of Each Half Year |        |        |        |        |        | Case Estimates at the End of Eacl |  |  | ear |
|----------|---------------------------------------------|--------|--------|--------|--------|--------|-----------------------------------|--|--|-----|
| ID       | 2018H1                                      | 2018H2 | 2019H1 | 2019H2 | 2020H1 | 2020H2 |                                   |  |  |     |
| Occurren | Occurrence Year: 2018                       |        |        |        |        |        |                                   |  |  |     |
| 1        | 150                                         | 200    | 75     | 75     | 75     | 0      |                                   |  |  |     |
| 2        | 0                                           |        |        |        |        |        |                                   |  |  |     |
| 3        |                                             |        |        | 315    | 260    | 260    |                                   |  |  |     |
| 4        |                                             |        |        |        | 75     | 90     |                                   |  |  |     |
| Occurren | ce Year: 2                                  | 019    |        |        |        |        |                                   |  |  |     |
| 5        |                                             |        | 35     | 35     | 0      |        |                                   |  |  |     |
| 6        |                                             |        |        | 225    | 0      |        |                                   |  |  |     |
| 7        |                                             |        | 0      | 0      | 225    | 0      |                                   |  |  |     |
| Occurren | ce Year: 2                                  | 020    |        |        |        |        |                                   |  |  |     |
| 8        |                                             |        |        |        | 250    | 65     |                                   |  |  |     |
| 9        |                                             |        |        |        | 25     | 0      |                                   |  |  |     |
| 10       |                                             |        |        |        | 275    | 0      |                                   |  |  |     |

(b) (*3 points*) Construct a development triangle of cumulative reported claims, by accident year, with maturity ages 6, 12, 18, 24, 30 and 36 months.

*The response for this part is to be provided in the Excel spreadsheet.* 

The above claim information provides claims from the following three lines of business:

- Medical malpractice
- Workers' compensation
- Automobile physical damage
- (c) (*1.5 points*) Select which line of business was the likely source for each of the following claims, providing a justification for each selection:
  - (i) Claim 2
  - (ii) Claim 3
  - (iii) Claim 7

The response for this part is to be provided in the Excel spreadsheet.



| Accident | Reported Pure Premiums |     |     |     |     |     |     |     |
|----------|------------------------|-----|-----|-----|-----|-----|-----|-----|
| Year     | 12                     | 24  | 36  | 48  | 60  | 72  | 84  | 96  |
| 2013     | 199                    | 295 | 394 | 471 | 545 | 586 | 620 | 637 |
| 2014     | 196                    | 293 | 393 | 469 | 544 | 626 | 618 |     |
| 2015     | 170                    | 257 | 344 | 419 | 485 | 521 |     |     |
| 2016     | 168                    | 258 | 346 | 424 | 494 |     |     |     |
| 2017     | 178                    | 280 | 377 | 468 |     |     |     |     |
| 2018     | 190                    | 300 | 408 |     |     |     |     |     |
| 2019     | 202                    | 321 |     |     |     |     |     |     |
| 2020     | 271                    |     |     |     |     |     |     |     |

You are given the following general liability development triangle for investigative analysis.

(d) (*1 point*) Identify two anomalies relating to this triangle.

The response for this part is to be provided in the Excel spreadsheet.

(e) (*l point*) Describe a business, operational, or environmental change that could cause each of the anomalies identified in part (d).

*The response for this part is to be provided in the Excel spreadsheet.* 



### GIRR Spring 2022 Question 1 (LOs 2c, 2d)

#### **Learning Outcomes:**

- (2c) Calculate written, earned, in-force and unearned premiums for portfolios of policies with various policy terms and earnings patterns.
- (2d) Adjust historical earned premiums to current rate levels.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 12 and 13.

#### Question:

## 1.

(6 points) You are given the following information for a single line of business:

| Calendar<br>Year | Unearned<br>Premiums at<br>End of Year | Earned<br>Premiums |
|------------------|----------------------------------------|--------------------|
| 2017             | 785,000                                | 778,650            |
| 2018             | 792,500                                | 782,020            |
| 2019             | 801,240                                | 789,880            |

(a) (0.5 points) Calculate the calendar year 2018 written premiums.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following historical rate changes for this line of business:

| Rate Change History              |                          |  |  |  |  |
|----------------------------------|--------------------------|--|--|--|--|
| Effective Date of<br>Rate Change | Overall Rate<br>Change % |  |  |  |  |
| Apr. 1, 2016                     | 2.0%                     |  |  |  |  |
| Jul. 1, 2017                     | 4.0%                     |  |  |  |  |
| Oct. 1, 2018                     | 7.0%                     |  |  |  |  |
| Feb. 1, 2020                     | 3.0%                     |  |  |  |  |

- There have been no additional rate changes after February 1, 2020.
- All policies are written for 12-month terms.



- Premiums are written evenly throughout the year.
- Premiums are earned evenly throughout the policy term.
- (b) (*2 points*) Calculate the 2017, 2018, and 2019 on-level earned premiums, applicable for ratemaking, using the parallelogram method.

*Provide the response for this part in the Excel spreadsheet.* 

Following an audit of the data for this line of business, it was discovered that the following two policies were not included in the earned premiums given above:

- Policy 1 was written on May 1, 2018, for an annual premium of 5,000.
- Policy 2 was written on November 1, 2018, for an annual premium of 7,000.
- Policies 1 and 2 were subject to the overall rate changes from the table above with no additional rating factors.
- (c) (*1.5 points*) Calculate the 2018 earned premium adjusted to current rate levels for ratemaking purposes for these two policies using the extension of exposures approach.

Provide the response for this part in the Excel spreadsheet.

(d) (1.5 points) Explain why the answer in part (c) results in a different answer from multiplying the 2018 earned premiums for these two policies by the 2018 on-level factor calculated in part (b).

*Provide the response for this part in the Excel spreadsheet.* 

Your co-worker recommends combining the on-level earned premiums from part (b) and part (c) for the total on-level earned premiums to use for ratemaking.

(e) (0.5 points) Critique this recommendation.



## GIRR Spring 2022 Question 2 (LOs 1d, 2a, 3c, 3d)

#### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (2a) Create development triangles of claims and counts from detailed claim transaction data.
- (3c) Identify the types of development triangles that can be used for investigative testing.
- (3d) Analyze development triangles for investigative testing.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 11 and 14.

#### Question:

# 2.

(7 points) You are given the following claim information evaluated as of December 31, 2021.

| Accident | <b>Reported Claims (000)</b> |       |       |       |  |  |  |
|----------|------------------------------|-------|-------|-------|--|--|--|
| Year     | 12 24 36 4                   |       |       |       |  |  |  |
| 2018     | 1,196                        | 1,525 | 1,638 | 1,723 |  |  |  |
| 2019     | 1,269                        | 1,607 | 1,908 |       |  |  |  |
| 2020     | 1,294                        | 1,707 |       |       |  |  |  |
| 2021     | 1,451                        |       |       |       |  |  |  |

| Accident | Reported Counts |     |     |     |  |  |  |
|----------|-----------------|-----|-----|-----|--|--|--|
| Year     | 12              | 24  | 36  | 48  |  |  |  |
| 2018     | 230             | 250 | 260 | 265 |  |  |  |
| 2019     | 235             | 255 | 265 |     |  |  |  |
| 2020     | 231             | 251 |     |     |  |  |  |
| 2021     | 234             |     |     |     |  |  |  |

You are also informed that the following six claim transactions were not captured in the triangles due to a system error.

| Trans<br># | Claim<br>ID | Transaction<br>Date | Transaction<br>Description     | Occurrence<br>Date | Case<br>Estimate<br>(000) | Indemnity<br>Payment<br>(000) | ALAE<br>Payment<br>(000) |
|------------|-------------|---------------------|--------------------------------|--------------------|---------------------------|-------------------------------|--------------------------|
| 1          | 1020        | May 17, 2019        | Open new claim file            | Apr. 27, 2018      | 10                        | 5                             |                          |
| 2          | 1377        | Nov. 3, 2019        | Open & close new<br>claim file | 1 Sen 15 7019      |                           | 50                            | 25                       |
| 3          | 1944        | Jan. 2, 2021        | Close reported claim<br>file   | Sep. 15, 2019      | -25                       | 10                            | 5                        |
| 4          | 2135        | Feb. 28, 2021       | Change in case estimate        | Jan. 6, 2020       | 65                        |                               |                          |
| 5          | 2260        | Apr. 24, 2021       | Open new claim file            | Feb. 3, 2018       | 20                        |                               |                          |
| 6          | 2260        | June 5, 2021        | Close reported claim<br>file   | Feb. 3, 2018       | -20                       |                               | 20                       |

(a) (4 *points*) Update both development triangles shown above to include the claim transactions not captured due to the system error.

The response for this part is to be provided in the Excel spreadsheet.



(b) (0.5 points) Determine calendar year 2021 reported claims.

*The response for this part is to be provided in the Excel spreadsheet.* 

Accident year 2021 paid claims and ALAE evaluated as of December 31, 2021, were 800,000.

(c) (0.5 points) Determine case reserves as of December 31, 2021, for accident year 2021 only.

The response for this part is to be provided in the Excel spreadsheet.

You are subsequently given a variety of corrected claim and count triangles and have been asked to conduct investigative tests.

- (d) (*1 point*) Describe the investigative tests you would recommend using for the following independent situations:
  - (iii) The claim department implemented a new definition of claims to distinguish between reported incidents that are valid claims and incidents not covered under the insurance policy.
  - (iv) The claim department implemented a new initiative to increase their use of partial settlements.

*The response for this part is to be provided in the Excel spreadsheet.* 

During investigative testing, you observe an increase in average reported claims, with changes greater than the rate of trend going down each column (from accident year to accident year). However, the reported counts are stable.

(e) (*1 point*) Provide two examples of company operational changes that could cause an increase in average reported claims without affecting reported counts.

*The response for this part is to be provided in the Excel spreadsheet.* 



## GIRR Fall 2022 Question 2 (LOs 2d)

#### **Learning Outcomes:**

(2d) Adjust historical earned premiums to current rate levels.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13.

#### **Question:**

## 2.

(*4 points*) You are conducting a ratemaking analysis for a personal automobile line of business. You are given the following information:

The following rate changes have occurred since 2017:

| Effective Date    | Rate Change |
|-------------------|-------------|
| July 1, 2017      | 5.0%        |
| September 1, 2018 | -2.0%       |
| February 1, 2020  | 7.0%        |
| October 1, 2021   | 3.0%        |

- There was a regulatory change where all premiums in force on May 1, 2019 were reduced by 10%.
- All policies are written for twelve-month policy terms.
- All policies are assumed to be written uniformly throughout a calendar year.
- New rates will be effective January 1, 2023.
- Calendar year 2019 earned premium is 1,400,000.
- (a) (2 *points*) Calculate the 2019 earned premium adjusted to current rate levels for ratemaking purposes.

*Provide the response for this part in the Excel spreadsheet.* 

(b) (*1 point*) Explain why the answer to part (a) would be higher if all policies were six-month policies instead of twelve-month policies.

*Provide the response for this part in the Excel spreadsheet.* 

Version 2025-1



The regulator is considering an increase to the state-mandated minimum policy limits effective January 1, 2023. Premiums will change to reflect this policy limits change.

(c) (*1 point*) Explain what effect this change would have on the on-level calculation from part (a).



### GIRR Fall 2022 Question 11 (LOs 2b, 2c)

#### **Learning Outcomes:**

- (2b) Describe the different types of exposures used for conducting actuarial work.
- (2c) Calculate written, earned, in-force and unearned premiums for portfolios of policies with various policy terms and earnings patterns.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 12.

#### **Question:**

# 11.

(5 *points*) You are given the following information for two policies with exposures that are earned evenly throughout the policy period:

- Policy number 101 is a semi-annual policy written on November 1, 2021.
- Policy number 102 is a two-year policy written on July 15, 2021.
- (a) (*1 point*) Describe the option(s) for recognizing written exposures on each policy.

Provide the response for this part in the Excel spreadsheet.

(b) (0.5 points) Calculate the percentage premium *earned* on December 31, 2021 for policy number 101.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (0.5 points) Calculate the percentage premium *unearned* on December 31, 2021 for policy number 102.

*Provide the response for this part in the Excel spreadsheet.* 

For some lines of general insurance, written exposures are not earned evenly throughout the policy term.

(d) (*1.5 points*) Explain why a warranty policy is not likely to have exposures earned evenly throughout the policy term.

Version 2025-1



Provide the response for this part in the Excel spreadsheet.

(e) (1.5 points) Describe three types of coverages or policies, other than a warranty policy, where it may not be appropriate to assume premiums are earned evenly throughout the policy term.



## GIRR Fall 2022 Question 18 (LOs 1d, 2a)

#### Learning Outcomes:

- (1d) Understand the components of ultimate values.
- (2a) Create development triangles of claims and counts from detailed claim transaction data.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3 and 11.

## Question:

## 18.

(5 points) You are given the following claims-made data for Nurses Professional Liability coverage from the claims department.

|                                    | Nurses - Professional Liability |                                                    |       |       |       |       |       |  |  |  |  |
|------------------------------------|---------------------------------|----------------------------------------------------|-------|-------|-------|-------|-------|--|--|--|--|
| Report                             |                                 | Incremental Paid Claims (000) During Calendar Year |       |       |       |       |       |  |  |  |  |
| Year 2015 2016 2017 2018 2019 2020 |                                 |                                                    |       |       |       |       |       |  |  |  |  |
| 2015                               | 330                             | 1,380                                              | 1,315 | 577   | 118   | 21    | 5     |  |  |  |  |
| 2016                               |                                 | 351                                                | 1,855 | 1,479 | 428   | 91    | 8     |  |  |  |  |
| 2017                               |                                 |                                                    | 436   | 1,489 | 1,252 | 933   | 168   |  |  |  |  |
| 2018                               |                                 |                                                    |       | 423   | 1,592 | 1,182 | 670   |  |  |  |  |
| 2019                               |                                 |                                                    |       |       | 449   | 1,675 | 1,540 |  |  |  |  |
| 2020                               |                                 |                                                    |       |       |       | 354   | 1,709 |  |  |  |  |
| 2021                               |                                 |                                                    |       |       |       |       | 584   |  |  |  |  |

|                | Case Estimates (000) at Evaluation Date |                  |                  |                  |                  |                  |                  |  |  |
|----------------|-----------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|--|--|
| Report<br>Year | Dec. 31,<br>2015                        | Dec. 31,<br>2016 | Dec. 31,<br>2017 | Dec. 31,<br>2018 | Dec. 31,<br>2019 | Dec. 31,<br>2020 | Dec. 31,<br>2021 |  |  |
| 2015           | 1,169                                   | 1,368            | 362              | 116              | 21               | 5                | 0                |  |  |
| 2016           |                                         | 1,321            | 1,348            | 222              | 94               | 23               | 16               |  |  |
| 2017           |                                         |                  | 1,456            | 1,378            | 689              | 177              | 18               |  |  |
| 2018           |                                         |                  |                  | 1,404            | 1,349            | 520              | 203              |  |  |
| 2019           |                                         |                  |                  |                  | 1,247            | 1,701            | 553              |  |  |
| 2020           |                                         |                  |                  |                  |                  | 1,543            | 1,711            |  |  |
| 2021           |                                         |                  |                  |                  |                  |                  | 1,350            |  |  |

(a) (1 point) Construct a cumulative reported claim development triangle by report year.



(b) (0.5 points) Calculate the calendar year 2020 reported claims for the coverage above.

*Provide the response for this part in the Excel spreadsheet.* 

You are subsequently informed that the following six claim transactions were not captured in the previous dataset.

| Trans.<br># | Transaction<br>Date | Transaction<br>Description                                           | Occurrence<br>Date | Report<br>Date | Change<br>in Case<br>Estimate<br>(000) | Indemnity<br>Payment<br>(000) |
|-------------|---------------------|----------------------------------------------------------------------|--------------------|----------------|----------------------------------------|-------------------------------|
| 1           | Aug. 5, 2019        | subrogation recovery                                                 | May 6, 2017        | July 2, 2018   |                                        | -15                           |
| 2           | Dec. 19, 2019       | payment on reported claim file                                       | Mar. 1, 2016       | Aug. 27, 2017  | -45                                    | 45                            |
| 3           | Dec. 28, 2019       | open and close new claim file                                        | Oct. 17, 2018      | Dec. 23, 2019  |                                        | 10                            |
| 4           | Jan. 28, 2020       | payment & change in<br>case estimate                                 | Aug. 1, 2015       | Nov. 28, 2016  | -20                                    | 15                            |
| 5           | Feb. 4, 2021        | open new claim file                                                  | Sept. 12, 2020     | Feb. 3, 2021   | 30                                     |                               |
| 6           | May 11, 2021        | payment on reported<br>claim file with no<br>change in case estimate | June 14, 2017      | Apr. 19, 2020  |                                        | 5                             |

(c) (*3 points*) Update the reported claim development triangle from part (a) to include the missing claim transactions.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following carried IBNR reserves for the Nurses coverage above:

| IBNR Reserves (000)     |       |  |  |  |  |  |
|-------------------------|-------|--|--|--|--|--|
| December 31, 2020 3,900 |       |  |  |  |  |  |
| December 31, 2021       | 4,100 |  |  |  |  |  |

(d) (0.5 points) Calculate the calendar year 2021 incurred claims.



### GIRR Spring 2023 Question 1 (LOs 2b, 2c, 2d)

#### **Learning Outcomes:**

- (2b) Describe the different types of exposures used for conducting actuarial work.
- (2c) Calculate written, earned, in-force and unearned premiums for portfolios of policies with various policy terms and earnings patterns.
- (2d) Adjust historical earned premiums to current rate levels.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 12 and 13.

#### Question:

# 1.

Provide the response for this question in the Excel spreadsheet.

(5 *points*) HIJ Insurance writes both 6-month and 12-month policies for a line of business. You are given the following:

- On January 1, 2020, the following policies were in-force:
  - 7,500 6-month policies with an average premium of 400
  - o 12,000 12-month policies with an average premium of 750
- There were no new policies written in 2020, but all in-force policies were renewed upon expiry.
- All premiums were increased by 5% for policies renewed on or after January 1, 2020.
- Due to COVID-19, there was a 10% rate reduction effective for all new, renewed, and inforce policies on April 1, 2020.
- All premiums were increased by 8% for policies written or renewed on or after July 1, 2021.
- There have been no additional rate changes since July 1, 2021.
- It is assumed that the key assumptions of the parallelogram method are valid.
- (a) (*1 point*) State the two key assumptions of the parallelogram method.
- (b) (3.5 points) Calculate the calendar year 2020 on-level premium to be used for a ratemaking analysis.
- (c) (0.5 points) Provide two examples of general insurance policies where exposures are not usually earned evenly throughout the policy term.



### GIRR Spring 2023 Question 2 (LOs 1g, 2a)

#### **Learning Outcomes:**

- (1g) Identify different types of data used for actuarial work.
- (2a) Create development triangles of claims and counts from detailed claim transaction data.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 4 and 11.

#### **Question:**

## 2.

(5 points) You are constructing claims data files for a ratemaking analysis.

(a) (*1 point*) Provide one advantage and one disadvantage to aggregating claims data by policy year.

ANSWER:

(b) (0.5 points) Provide one disadvantage to aggregating claims data by report year.

ANSWER:

You are given the following claims data aggregated by accident year:

| Accident |           | Reported Claims |           |           |           |           |  |  |  |  |
|----------|-----------|-----------------|-----------|-----------|-----------|-----------|--|--|--|--|
| Year     | 12        | 24              | 36        | 48        | 60        | 72        |  |  |  |  |
| 2017     | 2,147,785 | 3,025,674       | 3,620,901 | 4,136,684 | 4,362,359 | 4,382,594 |  |  |  |  |
| 2018     | 2,219,814 | 3,071,925       | 3,876,926 | 4,331,668 | 4,596,920 |           |  |  |  |  |
| 2019     | 2,342,602 | 4,154,013       | 4,922,135 | 5,074,225 |           |           |  |  |  |  |
| 2020     | 2,591,328 | 3,398,123       | 4,339,405 |           |           |           |  |  |  |  |
| 2021     | 2,582,962 | 3,768,518       |           |           |           |           |  |  |  |  |
| 2022     | 2,735,738 |                 |           |           |           |           |  |  |  |  |



| Accident |           |           |           |           |           |           |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Year     | 12        | 24        | 36        | 48        | 60        | 72        |
| 2017     | 1,249,954 | 2,244,328 | 3,004,204 | 3,728,241 | 4,161,007 | 4,367,084 |
| 2018     | 1,271,502 | 2,218,377 | 3,235,509 | 3,896,228 | 4,382,244 |           |
| 2019     | 1,346,283 | 2,368,791 | 3,339,691 | 4,154,460 |           |           |
| 2020     | 1,525,699 | 2,505,764 | 3,625,546 |           |           |           |
| 2021     | 1,435,742 | 2,756,999 |           |           |           |           |
| 2022     | 1,589,295 |           |           |           |           |           |

| Accident |     | Reported Counts |       |       |       |       |  |  |  |  |
|----------|-----|-----------------|-------|-------|-------|-------|--|--|--|--|
| Year     | 12  | 24              | 36    | 48    | 60    | 72    |  |  |  |  |
| 2017     | 729 | 895             | 998   | 1,082 | 1,119 | 1,122 |  |  |  |  |
| 2018     | 727 | 900             | 1,019 | 1,089 | 1,130 |       |  |  |  |  |
| 2019     | 743 | 911             | 1,022 | 1,102 |       |       |  |  |  |  |
| 2020     | 765 | 902             | 1,042 |       |       |       |  |  |  |  |
| 2021     | 763 | 939             |       |       |       |       |  |  |  |  |
| 2022     | 767 |                 |       |       |       |       |  |  |  |  |

| Accident | Closed Counts |     |     |       |       |       |  |  |
|----------|---------------|-----|-----|-------|-------|-------|--|--|
| Year     | 12            | 24  | 36  | 48    | 60    | 72    |  |  |
| 2017     | 466           | 697 | 855 | 991   | 1,075 | 1,118 |  |  |
| 2018     | 469           | 696 | 877 | 997   | 1,085 |       |  |  |
| 2019     | 474           | 706 | 874 | 1,007 |       |       |  |  |
| 2020     | 489           | 700 | 896 |       |       |       |  |  |
| 2021     | 491           | 727 |     |       |       |       |  |  |
| 2022     | 494           |     |     |       |       |       |  |  |

It was subsequently discovered that a claim file was miscoded in the system as follows:

|                            | Origi               | nal      | Correc        | ted     |  |
|----------------------------|---------------------|----------|---------------|---------|--|
| Transaction                | Date                | Amount   | Date          | Amount  |  |
| Accident Date              | Sep. 22,            | n/a      | Sep. 22,      | n/a     |  |
|                            | 2019                |          | 2019          |         |  |
| Claim reported to company, | Nov. 1, 2020        | 900,000  | Nov. 1, 2019  | 90,000  |  |
| case estimate established  | <i>NOV. 1, 2020</i> | 900,000  | 1107. 1, 2017 | 90,000  |  |
| Claim Payment              | Dec 1, 2020         | 1,500    | Dec 1, 2020   | 1,500   |  |
| Claim Payment              | Jul. 1, 2021        | 1,000    | Jul. 1, 2021  | 1,000   |  |
| Claim Payment              | Mar. 1, 2022        | 57,500   | Mar. 1, 2022  | 57,500  |  |
| Change in case estimate    | Mar. 1, 2022        | -500,000 | Mar. 1, 2022  | -50,000 |  |



(c) (2.5 points) Construct new data triangles with corrections for this claim file.

*Provide the response for this part in the Excel spreadsheet.* 

The calendar year 2022 changes for accident years 2016 and prior were:

- 15,700 in paid claims
- -8,500 in case estimates
- (d) (1 point) Calculate calendar year 2022 reported claims, based on corrected data.



### GIRR Fall 2023 Question 1 (LOs 1d, 2a, 3d)

#### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (2a) Create development triangles of claims and counts from detailed claim transaction data.
- (3d) Analyze development triangles for investigative testing.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 11, and 14.

#### **Question:**

## 1.

(6 points) An insurer began writing policies in 2019. You are given the following:

| Accident | Reported Claims (000) |        |       |       |
|----------|-----------------------|--------|-------|-------|
| Year     | 12                    | 24     | 36    | 48    |
| 2019     | 1,148                 | 1,783  | 2,526 | 3,410 |
| 2020     | 3,427                 | 4,893  | 6,847 |       |
| 2021     | 5,710                 | 12,170 |       |       |
| 2022     | 8,035                 |        |       |       |

| Accident | Paid Claims (000) |       |       |       |
|----------|-------------------|-------|-------|-------|
| Year     | 12                | 24    | 36    | 48    |
| 2019     | 138               | 466   | 882   | 1,425 |
| 2020     | 413               | 1,269 | 3,148 |       |
| 2021     | 689               | 4,140 |       |       |
| 2022     | 1,286             |       |       |       |

It was subsequently discovered that the following claims and their transactions were not captured in the triangles.

| Claim<br>ID | Occurrence<br>Date |
|-------------|--------------------|
| 100         | Oct. 11, 2019      |
| 200         | Jan. 5, 2020       |
| 300         | Feb. 28, 2021      |



| Trans<br># | Claim<br>ID | Transaction<br>Date | Transaction Description           | Change in Case<br>Estimate (000) | Payment<br>(000) |
|------------|-------------|---------------------|-----------------------------------|----------------------------------|------------------|
| 1          | 200         | Feb. 7, 2020        | Open new claim file               | 17                               |                  |
| 2          | 100         | May 12, 2020        | Open new claim file               | 5                                |                  |
| 3          | 300         | Mar. 8, 2021        | Open new claim file               | 29                               |                  |
| 4          | 100         | Jul. 22, 2021       | Payment & change in case estimate | -5                               | 6                |
| 5          | 200         | Nov. 13, 2021       | Payment & change in case estimate | -13                              | 6                |
| 6          | 300         | Jun. 4, 2022        | Payment                           |                                  | 11               |

- (a) (*3 points*) Update both triangles to include the missing transactions.
- (b) (*1 point*) Identify an anomaly in the triangle of ratios of paid claims to reported claims based on the corrected triangles from part (a).
- (c) (*1 point*) Describe two operational changes that could have caused the anomaly you identified in part (b).

You are given the following carried IBNR reserves:

| IBNR Reserves (000) |        |  |  |
|---------------------|--------|--|--|
| Dec 31, 2019        | 4,591  |  |  |
| Dec 31, 2020        | 17,722 |  |  |
| Dec 31, 2021        | 38,476 |  |  |
| Dec 31, 2022        | 61,299 |  |  |

(d) (*1 point*) Calculate incurred claims for calendar year 2021.



## GIRR Fall 2023 Question 9 (LOs 2d)

#### **Learning Outcomes:**

(2d) Adjust historical earned premiums to current rate levels.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13.

#### **Question:**

## 9.

Provide the response for this question in the Excel spreadsheet.

(5 *points*) You are conducting a ratemaking analysis and are given the following historical rate change information:

| Effective Date of<br>Rate Change | Rate<br>Change |
|----------------------------------|----------------|
| July 1, 2019                     | 3%             |
| July 1, 2020                     | 7%             |
| April 1, 2022                    | 6%             |

- Premiums are written evenly throughout the year.
- Premiums are earned evenly throughout the policy term.
- Prior to January 1, 2020, all policies were written for 12-month terms.
- Since January 1, 2020, 50% of policies have been written for 12-month terms and 50% of policies have been written for 6-month terms.
- There have been no rate changes since April 1, 2022.
- (a) (0.5 points) Provide one reason why the company would want to write more 6-month policies in this situation.
- (b) (*3 points*) Calculate the premium on-level factors for calendar years 2019 through 2022 to use in estimating expected claim ratios for the ratemaking analysis.

You also need to determine premium on-level factors to use in estimating expected claim ratios for reserves as of December 31, 2022.

(c) (*1 point*) Explain why the on-level factors needed for reserving would be lower than the on-level factors calculated in part (b).

Version 2025-1



Premiums also need to be adjusted to ultimate values in certain situations.

(d) (0.5 points) Provide one situation where actuaries would need to determine an estimate of ultimate premiums.



## GIRR Fall 2023 Question 15 (LOs 2c, 2d)

#### **Learning Outcomes:**

- (2c) Calculate written, earned, in-force and unearned premiums for portfolios of policies with various policy terms and earnings patterns.
- (2d) Adjust historical earned premiums to current rate levels.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 12 and 13.

#### Question:

## 15.

Provide the response for this question in the Excel spreadsheet.

(5 points) You are given the following:

| Policy | Policy  |                              |                               |
|--------|---------|------------------------------|-------------------------------|
| Number | Premium | <b>Policy Effective Date</b> | <b>Policy Expiration Date</b> |
| 501    | 5,000   | July 1, 2020                 | June 30, 2022                 |
| 502    | 3,600   | April 1, 2021                | March 31, 2024                |
| 503    | 2,400   | January 1, 2022              | December 31, 2024             |
| 504    | 4,800   | September 1, 2022            | August 31, 2024               |

- The written premiums are divided into equal annual values and recorded on each anniversary of the effective date.
- Premiums are earned evenly throughout the policy term.
- There were no cancellations.
- (a) (*1 point*) Calculate the written premiums for 2022.
- (b) (*1 point*) Calculate the earned premiums for 2022.
- (c) (*1 point*) Calculate the unearned premiums as of December 31, 2022.

It was subsequently noticed that policy 504 was a motorcycle policy that was priced assuming it was not operated from October 1 through March 31 each year.

(d) (*1 point*) Recalculate the 2022 earned premium for policy 504.

Version 2025-1



- (e) (0.5 points) Recalculate the unearned premium as of December 31, 2022 for policy 504.
- (f) (0.5 points) Describe why the parallelogram approximation would not be appropriate when adjusting historical premiums to current rate levels for policies such as policy 504.



#### GIRR Spring 2024 Question 1 (LOs 2c, 2d)

#### **Learning Outcomes:**

- (2c) Calculate written, earned, in-force and unearned premiums for portfolios of policies with various policy terms and earnings patterns.
- (2d) Adjust historical earned premiums to current rate levels.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 12 and 13.

#### Question:

## 1.

Provide the response for this question in the Excel spreadsheet.

(6 points) ABC Insurance has a book of business with the following information:

- There were 1,000 annual policies in force on January 1, 2022, each with an annual premium of 2,100, and a renewal date of April 1.
- These policies had a renewal rate of 80% on April 1, 2022, and a renewal rate of 70% on April 1, 2023.
- The following four other policies have been written:

| Policy<br>Number | Effective<br>Date | Policy Term<br>(months) | Written<br>Premium |
|------------------|-------------------|-------------------------|--------------------|
| 100              | Mar. 1, 2022      | 12                      | 3,000              |
| 200              | May 1, 2022       | 24                      | 4,200              |
| 300              | Jul. 1, 2022      | 18                      | 2,100              |
| 400              | Sep. 1, 2023      | 6                       | 1,200              |

- Policy 100 was renewed on March 1, 2023.
- Policy 300 was cancelled on October 1, 2023.
- Policies 100, 200, and 400 were still in force on December 31, 2023.
- Premiums for all policies written or renewed on or after April 1, 2022, were increased by 5%.
- Premiums for all policies written or renewed on or after April 1, 2023, were increased by 8%.
- ABC earns premium evenly throughout the year.
- (a) (2 points) Calculate the total earned premium for calendar year 2022.



(b) (2 points) Calculate the total unearned premium as of December 31, 2023.

ABC is conducting a ratemaking analysis with new rates to be effective April 1, 2024.

- (c) (1.5 points) Calculate the calendar year 2022 earned premium at current rate levels using the extension of exposures method.
- (d) (0.5 points) State why the parallelogram approach is not as accurate as the extension of exposures method used in part (c).



## GIRR Spring 2024 Question 5 (LOs 1d, 1f, 3g, and 3j)

#### **Learning Outcomes:**

- (2d) Adjust historical earned premiums to current rate levels.
- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6f) Explain the requirements for loadings for catastrophes and large claims in ratemaking.
- (6g) Calculate loadings for catastrophes and large claims.
- (6h) Apply loadings for catastrophes and large claims in ratemaking.
- (6j) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.
- (6k) Demonstrate the use of credibility in ratemaking.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13, 26, 31, and 32.

#### **Question:**

## 5.

Provide the response for this question in the Excel spreadsheet.

(*11 points*) You are conducting a ratemaking analysis for a line of business in state S with the following information:

- The new rates are to be effective September 1, 2024, through August 31, 2025.
- All policies are written for 6-month policy terms.
- The annual frequency trend is -1%.
- The annual severity trend is 5%.

You are also given the following state S claims data for non-hurricane weather excluding hail:

|                  | Ultimate                                      |          |  |
|------------------|-----------------------------------------------|----------|--|
| Accident<br>Year | Frequency per 100 earned<br>house years (EHY) | Severity |  |
| 2014             | 2.02                                          | 4,100    |  |
| 2015             | 0.39                                          | 3,500    |  |
| 2016             | 1.99                                          | 2,900    |  |
| 2017             | 0.10                                          | 4,400    |  |
| 2018             | 1.99                                          | 2,800    |  |
| 2019             | 0.80                                          | 4,200    |  |



|                  | Ultimate                                      |          |  |  |
|------------------|-----------------------------------------------|----------|--|--|
| Accident<br>Year | Frequency per 100 earned<br>house years (EHY) | Severity |  |  |
| 2020             | 0.63                                          | 2,600    |  |  |
| 2021             | 2.73                                          | 3,600    |  |  |
| 2022             | 0.56                                          | 2,100    |  |  |
| 2023             | 1.69                                          | 3,100    |  |  |

- (a) (2 *points*) Calculate the trended ultimate non-hurricane weather excluding hail pure premium per 100 EHY for all years.
- (b) (0.5 points) Recommend the trended ultimate non-hurricane weather excluding hail pure premium per 100 EHY to use in determining a weather loading. Justify your recommendation.

You are given the following additional information:

- Calendar year 2023 earned premiums at current rate level are 13,089,711.
- Calendar year 2023 EHY are 17,931.
- State S is part of region R.
- The trended ultimate pure premium per 100 EHY for region R is 4,000.
- The credibility that relates to the non-hurricane weather excluding hail loading for state S is 70%.
- (c) (*1 point*) Calculate the non-hurricane weather excluding hail loading percentage to use for ratemaking.

Actuaries can have flexibility in choosing the number of years to include in the experience period for ratemaking purposes.

(d) (*1 point*) Identify two considerations when choosing the number of years and/or the weights to assign to each of the years.



| Accident<br>Year | Earned<br>Exposures | Ultimate<br>Counts | Historical Earned<br>Premiums | Ultimate<br>Claims |
|------------------|---------------------|--------------------|-------------------------------|--------------------|
| 2019             | 20,675              | 1,070              | 13,510,549                    | 8,709,600          |
| 2020             | 19,937              | 1,075              | 13,268,660                    | 8,673,608          |
| 2021             | 17,061              | 1,074              | 11,739,370                    | 7,919,295          |
| 2022             | 17,992              | 1,141              | 12,638,750                    | 8,605,528          |
| 2023             | 17,931              | 1,087              | 13,089,711                    | 9,489,317          |

You are given the following data:

The full credibility standard is 3,654 ultimate counts.

- (e) (*1 point*) Recommend the number of years to include when estimating the weighted average trended claim ratio for the indicated rate change. Justify your recommendation.
- (f) (*1 point*) Recommend the weights to assign to each year when estimating the weighted average trended claim ratio for the indicated rate change. Justify your recommendation.

You are given the following additional information:

- Rate change history:
  - $\circ$  A rate change of +3% was effective July 1, 2020
  - A rate change of +4% was effective July 1, 2022
- Premiums are written and earned evenly throughout the year.
- The annual premium trend is 0%.
- The ratio of ULAE to claims is 5%.
- The ratio of fixed expenses to premiums at current rates is 3%.
- The ratio of variable expenses to premiums is 12%.
- The ratio of profit and contingencies to premiums is 4%.
- (g) (4.5 points) Calculate the indicated rate change for this line of business.



# GIRR Spring 2024 Question 13 (LOs 2a)

## **Learning Outcomes:**

(2a) Create development triangles of claims and counts from detailed claim transaction data.

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 11.

# **Question:**

# 13.

# Provide the response for this question in the Excel spreadsheet.

(5 points) You are given the following data for a line of business from your company's internal data

| Accident | <b>Reported Claims from Internal Data Source</b> |           |           |           |           |           | <b>Reported Claims from Internal Data S</b> |  |  |  |  |
|----------|--------------------------------------------------|-----------|-----------|-----------|-----------|-----------|---------------------------------------------|--|--|--|--|
| Year     | 12                                               | 24        | 36        | 48        | 60        | 72        |                                             |  |  |  |  |
| 2015     | 2,073,186                                        | 2,977,355 | 3,689,430 | 4,344,924 | 4,635,919 | 4,691,541 |                                             |  |  |  |  |
| 2016     | 2,214,894                                        | 3,167,365 | 4,021,756 | 4,613,081 | 4,945,867 | 5,014,244 |                                             |  |  |  |  |
| 2017     | 2,339,966                                        | 3,357,699 | 4,299,159 | 4,992,272 | 5,303,741 | 5,364,852 |                                             |  |  |  |  |
| 2018     | 2,442,143                                        | 3,577,869 | 4,576,972 | 5,228,180 | 5,653,369 | 5,760,949 |                                             |  |  |  |  |
| 2019     | 2,592,402                                        | 3,757,301 | 4,853,532 | 5,625,219 | 6,054,505 |           |                                             |  |  |  |  |
| 2020     | 2,817,613                                        | 4,182,588 | 5,212,351 | 6,024,272 |           |           |                                             |  |  |  |  |
| 2021     | 3,075,951                                        | 4,425,866 | 5,613,235 |           |           |           |                                             |  |  |  |  |
| 2022     | 3,232,412                                        | 4,682,692 |           |           |           |           |                                             |  |  |  |  |
| 2023     | 3,554,432                                        |           |           |           |           |           |                                             |  |  |  |  |

| Accident | <b>Cumulative Paid Claims from Internal Data Source</b> |           |           |           |           |           |
|----------|---------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| Year     | 12                                                      | 24        | 36        | 48        | 60        | 72        |
| 2015     | 1,286,342                                               | 2,412,544 | 3,380,499 | 4,184,900 | 4,587,477 | 4,691,541 |
| 2016     | 1,419,281                                               | 2,553,776 | 3,692,376 | 4,472,461 | 4,899,904 | 5,014,244 |
| 2017     | 1,474,216                                               | 2,703,709 | 3,940,993 | 4,833,876 | 5,248,486 | 5,364,852 |
| 2018     | 1,470,542                                               | 2,889,545 | 4,189,625 | 5,064,468 | 5,604,641 | 5,760,949 |
| 2019     | 1,607,264                                               | 2,999,878 | 4,445,019 | 5,419,708 | 5,967,598 |           |
| 2020     | 1,747,620                                               | 3,387,292 | 4,766,703 | 5,724,228 |           |           |
| 2021     | 1,964,983                                               | 3,552,637 | 5,155,384 |           |           |           |
| 2022     | 1,980,306                                               | 3,785,833 |           |           |           |           |
| 2023     | 2,247,631                                               |           |           |           |           |           |



There is no development beyond 72 months.

Your company reports its data to an industry bureau that aggregates industry data. The industry bureau provided the following summary of the information they received from your company:

| Calendar<br>Year (CY) | Claims Paid<br>During CY | Change in Case<br>Estimates During CY |
|-----------------------|--------------------------|---------------------------------------|
| 2021                  | 1,762,048                | 114,622                               |
| 2022                  | 1,564,355                | 291,478                               |
| 2023                  | 2,332,776                | -156,760                              |

(a) (1.5 points) Verify that the change in case estimates during calendar year 2023 from the industry summary should be 223,240.

An investigation into the difference in the numbers found that it was due to an incorrect value reported to the industry bureau.

(b) (1.5 points) Identify the value that was reported in error to the industry bureau.

You are given the following claims information regarding two claims for a different line of business:

- Claim #4400 is a claim file from an accident that occurred on March 1, 2021 and was reported to the insurer on October 1, 2021. The claim file originally closed in 2022 but was later reopened in 2023. The company does not treat such claims as a new claim, but as reopening the original claim file.
- Claim #5500 is a claim file from an accident that occurred on July 1, 2021 and was reported to the insurer on February 1, 2022. The adjuster set an initial case estimate of 12,000. Upon further investigation, on February 1, 2023 this claim was found to not be covered under the insurance policy purchased by the insured, and the claim file was closed with no claim payments made.
- (c) (*1 point*) Construct a *reported* count triangle that reflects the development on these two claim files over time. Make sure to correctly label your triangles.
- (d) (*l point*) Construct a *closed* count triangle that reflects the development on these two claim files over time. Make sure to correctly label your triangles.



## GIRR Fall 2024 Question 4 (LOs 1d, 2a, 2c)

#### Learning Outcomes:

- (1d) Understand the components of ultimate values.
- (2a) Create development triangles of claims and counts from detailed claim transaction data.
- (2c) Calculate written, earned, in-force and unearned premiums for portfolios of policies with various policy terms and earnings patterns.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 11, and 12.

## **Question:**

# **4**.

Provide the response for this question in the Excel spreadsheet.

(6 points) ABC Insurance is a new insurer that started writing business in 2021. You are given:

- One policy was written on the first day of each month from April 2021 to March 2024, for a total of 36 policies.
- Each policy is a two-year policy.
- The two-year premium of 120 per policy is recorded on the effective date of each policy.
- There are no cancellations or changes to policies.
- None of the policies were renewed upon expiration.
- Policies are earned evenly through the policy term.
- The earned premiums are:

| Calendar<br>Year | Earned<br>Premiums |
|------------------|--------------------|
| 2021             | 225                |
| 2022             | 930                |
| 2023             | 1,425              |

- (a) (2 points) Verify the earned premiums for calendar years 2021, 2022, and 2023.
- (b) (*1 point*) Calculate the unearned premiums as of each year-end for 2021, 2022, and 2023.



(c) (0.5 points) Calculate in-force premiums as of December 31, 2023.

DEF Insurance is another insurer. DEF's total in-force premiums are 50% of ABC's total in-force premiums. A market analyst is comparing total in-force premiums and concludes that DEF has lower written premium volume than ABC Insurance.

(d) (0.5 points) Describe a scenario where the market analyst's conclusion would be incorrect.

The following claim development triangle is given for ABC Insurance:

| Accident | <b>Reported Claims</b> |     |     |  |
|----------|------------------------|-----|-----|--|
| Year     | 12                     | 24  | 36  |  |
| 2021     | 68                     | 108 | 135 |  |
| 2022     | 279                    | 446 |     |  |
| 2023     | 428                    |     |     |  |

(e) (*1 point*) Calculate the reported claim ratios for each of calendar years 2022 and 2023.

You are also given:

- There is no development beyond 36 months.
- Ultimate claim ratios for accident years 2022 and 2023 are the same as accident year 2021.
- (f) (*1 point*) Calculate IBNR for accident years 2022 and 2023.



# GIRR Fall 2024 Question 10 (LOs 2a, 3e, 3g)

## Learning Outcomes:

- (2a) Create development triangles of claims and counts from detailed claim transaction data.
- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

## **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 16 and 22.

# **Question:**

# 10.

Provide the response for this question in the Excel spreadsheet.

(7 *points*) General liability claims may have a long lag between the occurrence date and the report date.

- (a) (0.5 points) Provide an example of another line of business that often has a long lag between the occurrence date and the report date.
- (b) (0.5 points) Provide an example of a line of business where claim files are commonly reopened.

You are given:

| Accident | Cumulative Paid Claims |           |           |           |           |           |
|----------|------------------------|-----------|-----------|-----------|-----------|-----------|
| Year     | 12                     | 24        | 36        | 48        | 60        | 72        |
| 2018     | 1,518,006              | 3,284,534 | 4,838,338 | 6,146,551 | 6,945,034 | 7,149,672 |
| 2019     | 1,582,770              | 3,552,084 | 5,075,462 | 6,140,083 | 7,043,201 |           |
| 2020     | 1,573,601              | 3,607,985 | 4,923,578 | 6,208,567 |           |           |
| 2021     | 1,608,502              | 3,404,322 | 4,897,059 |           |           |           |
| 2022     | 1,448,977              | 3,339,496 |           |           |           |           |
| 2023     | 1,791,306              |           |           |           |           |           |



A legislative change became effective July 1, 2021, reducing claim costs 20% for all claims paid on or after this date.

(c) (*2 points*) Construct a revised cumulative paid claims triangle adjusted for the legislative change.

You are given:

| Accident<br>Year | Projected Earned<br>Exposures | Projected<br>Ultimate Claims |
|------------------|-------------------------------|------------------------------|
| 2024             | 10,600                        | 7,105,054                    |
| 2025             | 10,710                        | 7,694,043                    |

- The annual claim frequency trend is expected to be -0.3%.
- The annual claim severity trend is expected to be 7.5%.
- The 2023 cost level claim frequency is 10.6%.
- The 2023 cost level severity is 5,900.
- (d) (*1 point*) Verify the projected ultimate claims for accident years 2024 and 2025.

The ultimate claims for all accident years are estimated as:

| Accident<br>Year | Projected<br>Ultimate Claims |
|------------------|------------------------------|
| 2018             | 7,149,672                    |
| 2019             | 7,289,724                    |
| 2020             | 7,484,846                    |
| 2021             | 7,571,028                    |
| 2022             | 7,534,985                    |
| 2023             | 9,222,361                    |
| 2024             | 7,105,054                    |
| 2025             | 7,694,043                    |

(e) (*3 points*) Calculate the claims expected to be paid in calendar years 2024 and 2025, using the results from part (c).



# GIRR Fall 2024 Question 11 (LOs 2d, 5b, 5e)

### **Learning Outcomes:**

- (2d) Adjust historical earned premiums to current rate levels.
- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13 and 27.

## Question:

# 11.

## Provide the response for this question in the Excel spreadsheet.

(5 *points*) Your company started writing a new line of business on March 1, 2022. You are conducting a ratemaking analysis for this line of business and are given the following:

| Historical Rate Changes Since March 1, 2022 |             |  |  |  |
|---------------------------------------------|-------------|--|--|--|
| Effective Date of Rate                      |             |  |  |  |
| Change                                      | Rate Change |  |  |  |
| September 1, 2022                           | 5%          |  |  |  |
| January 1, 2024                             | 7%          |  |  |  |

- The first policy was issued March 1, 2022.
- Premiums are written evenly throughout the year.
- Premiums are earned evenly throughout the policy term.
- All policies were written for 12-month terms.
- There have been no rate changes since January 1, 2024.
- New rates will be effective April 1, 2025, for one year.
- The annual premium trend is -0.5%.

You are adjusting historical earned premiums to the future rating period.

- (a) (*3 points*) Calculate the on-level premium factors for calendar year 2022 and 2023.
- (b) (2 points) Calculate premium trend factors for calendar year 2022 and 2023.



# GI 101 – LEARNING OBJECTIVE 3

3. Topic: Projecting Ultimate Claims

The candidate will know how to calculate and evaluate projected ultimate values.



# GIRR Fall 2020 Question 2 (LOs 3e, 3f, 3g)

## **Learning Outcomes:**

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).

## **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 18.

## Question:

**2.** (*4 points*) You are estimating ultimate claims as of December 31, 2019 using the Bornhuetter Ferguson method, and are given the following information:

|          | Actual Claims       |          | Ultimate Claims from         |           |           |
|----------|---------------------|----------|------------------------------|-----------|-----------|
| Accident | as of Dec. 31, 2019 |          | <b>Development Method on</b> |           | Expected  |
| Year     | Paid                | Reported | Paid                         | Reported  | Claims    |
| 2016     | 889,190             | 898,170  | 916,755                      | 916,133   | 889,488   |
| 2017     | 916,340             | 964,570  | 1,014,895                    | 1,003,537 | 998,479   |
| 2018     | 824,940             | 959,230  | 1,065,872                    | 1,077,820 | 1,113,814 |
| 2019     | 586,850             | 838,362  | 1,140,237                    | 1,139,829 | 1,142,919 |

- (a) (*1 point*) Calculate the total ultimate claims using the Bornhuetter Ferguson method applied to the following two claim amounts:
  - (i) Paid claims
  - (ii) Reported claims

*The response for part (a) is to be provided in the Excel spreadsheet.* 

- (b) (1.5 points) Evaluate the reasonableness of the inputs for the Bornhuetter Ferguson method in part (a) by comparing the following two amounts:
  - (i) Actual paid claims to expected paid claims
  - (ii) Actual reported claims to expected reported claims

Version 2025-1



*The response for part (b) is to be provided in the Excel spreadsheet.* 

(c) (0.5 points) Identify two reasons that might cause the differences shown in part (b).

ANSWER:

You have decided to estimate ultimate claims as of December 31, 2019 using the Benktander method.

(d) (0.5 points) Describe a reason why the Benktander method might be preferred to estimate ultimate claims.

ANSWER:

(e) (0.5 points) Calculate the total ultimate claims applied to paid claims using one iteration of the Benktander method.

The response for part (e) is to be provided in the Excel spreadsheet.



# GIRR Fall 2020 Question 7 (LOs 3j)

#### **Learning Outcomes:**

(3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 22.

## **Question:**

7. (*4 points*) You are given the following characteristics for two different lines of business:

Line of Business A:

- Twenty years of data available for claims and counts
- Long-tailed coverage
- Volatile claim experience
- Significant annual claim ratio (pure premium) trend of 9%
- Increasing claim frequency over the most recent 10 years
- Policy limits have increased over time

Line of Business B:

- Newer growing line of business with six years of claim data available, but count data is unreliable due to change in definition of a claim count
- Short-tailed coverage
- Relatively stable experience for reported claims except for occasional large claims
- Paid claim experience includes a decrease in claim settlement patterns due to the strain of a growing business

Recommend two methods for projecting ultimate claims that are appropriate <u>for each</u> line of business without repeating any methods. Justify your recommendations for all four methods.



# GIRR Fall 2020 Question 9 (LOs 2d, 3e, 3f, 3g)

### Learning Outcomes:

- (2d) Adjust historical earned premiums to current rate levels.
- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13, 15 and 19.

### **Question:**

# **9.** (8 points)

(a) (0.5 points) Describe why premium on-level factors are typically used in the Cape Cod method but not in the Bornhuetter Ferguson method.

ANSWER:

(b) (0.5 points) Describe a situation in which an actuary may choose to derive an adjusted expected pure premium instead of an adjusted expected claim ratio when using the Cape Cod method.

| ANSWER: |  |  |
|---------|--|--|
|         |  |  |

In selecting a decay factor for the Generalized Cape Cod method, actuaries should consider their confidence in the development method.

(c) (*1 point*) Explain why confidence in the development method is a consideration in selecting the decay factor.



You have been asked to project ultimate claims using the Cape Cod method and have been given the following information as of December 31, 2019:

| Accident<br>Year | Earned<br>Premiums<br>(000) | Actual<br>Reported<br>Claims<br>(000) | Reported<br>Cumulative<br>Development<br>Factors |
|------------------|-----------------------------|---------------------------------------|--------------------------------------------------|
| 2015             | 16,100                      | 11,150                                | 1.030                                            |
| 2016             | 17,600                      | 11,380                                | 1.055                                            |
| 2017             | 18,300                      | 11,190                                | 1.100                                            |
| 2018             | 19,800                      | 11,470                                | 1.300                                            |
| 2019             | 21,600                      | 9,040                                 | 1.700                                            |

- All policies are written for 12-month policy terms.
- The following rate changes have occurred:
  - 6% effective January 1, 2016
  - 5% effective July 1, 2018
- The annual claim ratio trend is 5%.
- Tort reform resulted in a claim decrease of 10% for all accidents occurring on or after July 1, 2016.
- Accident year 2018 includes one unusually large claim of 600,000 which has been recorded as a case estimate.
- (d) (*2 points*) Calculate premium on-level factors for each accident year, to use in the Cape Cod method as of December 31, 2019.

*The response for part (d) is to be provided in the Excel spreadsheet.* 

(e) (4 points) Calculate the projected ultimate claims for each accident year using the Cape Cod method.

*The response for part (e) is to be provided in the Excel spreadsheet.* 



## GIRR Fall 2020 Question 17 (LOs 3h, 3i)

#### **Learning Outcomes:**

- (3h) Explain the effect of changing conditions on the projection methods cited in (3e).
- (3i) Assess the appropriateness of the projection methods cited in (3e) in varying circumstances.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 21.

## **Question:**

- **17.** (3 points)
- (a) (0.5 points) Provide two different examples of changing conditions that are likely to decrease the latest diagonal of a reported claim triangle.

ANSWER:

(b) (0.5 points) Describe how an increase in attachment point for an excess of loss reinsurer could affect a reported claim triangle.

ANSWER:

You are analyzing a reported development triangle for a line of business where the ultimate claim ratio is increasing unexpectedly apparently due to inadequate price increases. All other aspects of the business are in a steady-state environment.

(c) (*1 point*) Explain what affect the claim ratio deterioration is likely to have on reported claim development factors.



- (d) (*1 point*) Explain which of the following two methods is likely to produce a more accurate estimate of ultimate claims in recent accident years in this scenario:
  - i) the development method applied to reported claims, or
  - ii) the Bornhuetter Ferguson method applied to reported claims.



# GIRR Fall 2020 Question 19 (LOs 3e, 3g)

### Learning Outcomes:

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

## **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 15 and 20.

## Question:

**19.** (*4 points*) You are estimating ultimate claims for a line of business and need to apply a Berquist-Sherman adjustment for a change in settlement rates. You are given the following information:

| Accident | Closed ( | Counts exc | cluding La | ding Large Claim Counts |       |  |  |  |
|----------|----------|------------|------------|-------------------------|-------|--|--|--|
| Year     | 12       | 24         | 36         | 48                      | 60    |  |  |  |
| 2015     | 618      | 860        | 1,042      | 1,187                   | 1,256 |  |  |  |
| 2016     | 801      | 1,035      | 1,273      | 1,426                   |       |  |  |  |
| 2017     | 627      | 882        | 1,082      |                         |       |  |  |  |
| 2018     | 606      | 929        |            |                         |       |  |  |  |
| 2019     | 699      |            |            |                         |       |  |  |  |

| Selected Disposal Ratios by Maturity Age |                |  |  |  |  |  |  |  |  |
|------------------------------------------|----------------|--|--|--|--|--|--|--|--|
| 12                                       | 12 24 36 48 60 |  |  |  |  |  |  |  |  |
| 0.449 0.688 0.844 0.945 1.000            |                |  |  |  |  |  |  |  |  |

(a) (*1 point*) Calculate the triangle of adjusted closed counts.

*The response for part (a) is to be provided in the Excel spreadsheet.* 



| Accident |         | Paid Claims Excluding Large Claims |           |           |           |  |  |  |  |  |  |
|----------|---------|------------------------------------|-----------|-----------|-----------|--|--|--|--|--|--|
| Year     | 12      | 12 24 36                           |           | <b>48</b> | 60        |  |  |  |  |  |  |
| 2015     | 756,000 | 2,101,000                          | 4,562,000 | 6,689,000 | 7,213,000 |  |  |  |  |  |  |
| 2016     | 865,000 | 2,250,000                          | 5,230,000 | 8,044,000 |           |  |  |  |  |  |  |
| 2017     | 696,000 | 1,967,000                          | 4,601,000 |           |           |  |  |  |  |  |  |
| 2018     | 699,000 | 2,145,000                          |           |           |           |  |  |  |  |  |  |
| 2019     | 832,000 |                                    |           |           |           |  |  |  |  |  |  |

You are given the following additional information:

| Accident | Large Claims as of December 31, 2019 |         |  |  |  |  |  |  |
|----------|--------------------------------------|---------|--|--|--|--|--|--|
| Year     | Paid Reported                        |         |  |  |  |  |  |  |
| 2016     | 615,000                              | 801,000 |  |  |  |  |  |  |
| 2018     | 297,000                              | 923,000 |  |  |  |  |  |  |

- A 3-year volume-weighted average is used to select age-to-age development factors.
- There is no development after 60 months.

An exponential curve of the form  $y = ae^{bx}$  can be used to approximate the relationship between cumulative closed counts (x) and cumulative paid claims (y). You are given the following values for a and b:

| Accident |        | 8      |         |           |
|----------|--------|--------|---------|-----------|
| Year     | 12&24  | 24&36  | 36&48   | 48&60     |
| 2015     | 55,580 | 53,863 | 291,585 | 1,827,615 |
| 2016     | 32,800 | 57,432 | 145,499 |           |
| 2017     | 54,100 | 46,377 |         |           |
| 2018     | 85,287 |        |         |           |

| Accident | Parameter "b" Values    |         |         |         |  |  |  |  |  |
|----------|-------------------------|---------|---------|---------|--|--|--|--|--|
| Year     | 12&24 24&36 36&48 48&60 |         |         |         |  |  |  |  |  |
| 2015     | 0.00422                 | 0.00426 | 0.00264 | 0.00109 |  |  |  |  |  |
| 2016     | 0.00409                 | 0.00354 | 0.00281 |         |  |  |  |  |  |
| 2017     | 0.00407                 | 0.00425 |         |         |  |  |  |  |  |
| 2018     | 0.00347                 |         |         |         |  |  |  |  |  |

(b) (2.5 points) Calculate total unpaid claims using the development method applied to paid claims, adjusted for changes in settlement rates.

The response for part (b) is to be provided in the Excel spreadsheet.



(c) (0.5 points) Assess the appropriateness of relying on the accident year 2019 ultimate claims from part (b) when selecting ultimate claims.



## GIRR Spring 2021 Question 2 (LOs 3c, 3d)

### **Learning Outcomes:**

- (3c) Identify the types of development triangles that can be used for investigative testing.
- (3d) Analyze development triangles for investigative testing.

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 14.

## **Question:**

# 2.

| Accident |       | <b>Ratios of Closed Counts to Reported Counts</b> |       |       |       |       |       |       |       |  |  |
|----------|-------|---------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| Year     | 12    | 24                                                | 36    | 48    | 60    | 72    | 84    | 96    | 108   |  |  |
| 2012     | 0.882 | 0.865                                             | 0.895 | 0.897 | 0.911 | 0.956 | 0.975 | 1.000 | 1.000 |  |  |
| 2013     | 0.882 | 0.865                                             | 0.895 | 0.897 | 0.911 | 0.956 | 0.975 | 1.000 |       |  |  |
| 2014     | 0.882 | 0.865                                             | 0.895 | 0.897 | 0.911 | 0.951 | 0.976 |       |       |  |  |
| 2015     | 0.882 | 0.865                                             | 0.895 | 0.897 | 0.894 | 0.951 |       |       |       |  |  |
| 2016     | 0.882 | 0.865                                             | 0.895 | 0.864 | 0.894 |       |       |       |       |  |  |
| 2017     | 0.882 | 0.865                                             | 0.825 | 0.864 |       |       |       |       |       |  |  |
| 2018     | 0.882 | 0.774                                             | 0.825 |       |       |       |       |       |       |  |  |
| 2019     | 0.711 | 0.774                                             |       |       |       |       |       |       |       |  |  |
| 2020     | 0.711 |                                                   |       |       |       |       |       |       |       |  |  |

| Accident |     | Average Reported Claims |       |       |       |       |       |       |       |  |
|----------|-----|-------------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Year     | 12  | 24                      | 36    | 48    | 60    | 72    | 84    | 96    | 108   |  |
| 2012     | 882 | 1,135                   | 1,382 | 1,564 | 1,709 | 1,792 | 1,856 | 1,875 | 1,875 |  |
| 2013     | 882 | 1,135                   | 1,382 | 1,564 | 1,709 | 1,792 | 1,856 | 1,875 |       |  |
| 2014     | 882 | 1,135                   | 1,647 | 1,823 | 1,964 | 2,046 | 2,108 |       |       |  |
| 2015     | 882 | 1,135                   | 1,382 | 1,564 | 1,709 | 1,793 |       |       |       |  |
| 2016     | 882 | 1,135                   | 1,382 | 1,564 | 1,709 |       |       |       |       |  |
| 2017     | 882 | 1,135                   | 1,381 | 1,564 |       |       |       |       |       |  |
| 2018     | 882 | 1,135                   | 1,381 |       |       |       |       |       |       |  |
| 2019     | 882 | 1,135                   |       |       |       |       |       |       |       |  |
| 2020     | 882 |                         |       |       |       |       |       |       |       |  |

(4 points) You are given the following development triangles for investigative analysis on a book of business:



| Accident |     | Average Paid Claims |       |       |       |       |       |       |       |  |
|----------|-----|---------------------|-------|-------|-------|-------|-------|-------|-------|--|
| Year     | 12  | 24                  | 36    | 48    | 60    | 72    | 84    | 96    | 108   |  |
| 2012     | 625 | 1,055               | 1,324 | 1,500 | 1,667 | 1,678 | 1,731 | 1,744 | 1,800 |  |
| 2013     | 625 | 1,055               | 1,323 | 1,500 | 1,667 | 1,678 | 1,731 | 1,744 |       |  |
| 2014     | 625 | 1,055               | 1,323 | 1,500 | 1,667 | 1,669 | 1,731 |       |       |  |
| 2015     | 625 | 1,055               | 1,323 | 1,500 | 1,658 | 1,669 |       |       |       |  |
| 2016     | 625 | 1,055               | 1,323 | 1,491 | 1,657 |       |       |       |       |  |
| 2017     | 625 | 1,055               | 1,316 | 1,491 |       |       |       |       |       |  |
| 2018     | 625 | 1,048               | 1,316 |       |       |       |       |       |       |  |
| 2019     | 620 | 1,048               |       |       |       |       |       |       |       |  |
| 2020     | 620 |                     |       |       |       |       |       |       |       |  |

| Accident |       | ]     | Ratios of | f Paid C | laims to | Reporte | d Claim | 8     |       |
|----------|-------|-------|-----------|----------|----------|---------|---------|-------|-------|
| Year     | 12    | 24    | 36        | 48       | 60       | 72      | 84      | 96    | 108   |
| 2012     | 0.625 | 0.804 | 0.857     | 0.861    | 0.889    | 0.895   | 0.909   | 0.930 | 0.960 |
| 2013     | 0.625 | 0.804 | 0.857     | 0.861    | 0.889    | 0.895   | 0.909   | 0.930 |       |
| 2014     | 0.625 | 0.804 | 0.719     | 0.739    | 0.773    | 0.776   | 0.802   |       |       |
| 2015     | 0.625 | 0.804 | 0.857     | 0.861    | 0.867    | 0.884   |         |       |       |
| 2016     | 0.625 | 0.804 | 0.857     | 0.824    | 0.867    |         |         |       |       |
| 2017     | 0.625 | 0.804 | 0.786     | 0.824    |          |         |         |       |       |
| 2018     | 0.625 | 0.714 | 0.786     |          |          |         |         |       |       |
| 2019     | 0.500 | 0.714 |           |          |          |         |         |       |       |
| 2020     | 0.500 |       |           |          |          |         |         |       |       |

• The annual claims trend is 0% and experience has generally been stable.

Accident Year 2014 seems to show an anomaly.

(a) (1.5 points) Provide one possible interpretation of this anomaly. Justify your interpretation.

*Provide the response for this part in the Excel spreadsheet.* 

(b) (*1 point*) Identify another anomaly from the diagnostics.

Provide the response for this part in the Excel spreadsheet.

(c) (1.5 points) Provide one possible interpretation of the anomaly you identified in part (b). Justify your interpretation.

Provide the response for this part in the Excel spreadsheet.



# GIRR Spring 2021 Question 3 (LOs 3g, 4a, 4b, 4c, 5b, 5c, 5d, 5e)

## **Learning Outcomes:**

- (3g) Estimate ultimate values using the methods cited in (3e).
- (4a) Describe the key assumptions underlying ratio and count-based methods for estimating unpaid unallocated loss adjustment expenses.
- (4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.
- (4c) Evaluate and justify selections of unpaid unallocated loss adjustment expenses based on ratio and count-based methods.
- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 16, 23, and 26.

## **Question:**

# 3.

(7 *points*) You are estimating ultimate claims using the development-based frequency-severity method, and are given the following information:

|                  | БТ                  | Projected Ultimate Based on<br>Development Method |            |       |  |  |  |  |  |
|------------------|---------------------|---------------------------------------------------|------------|-------|--|--|--|--|--|
| Accident<br>Year | Earned<br>Exposures | Counts Claims Severity                            |            |       |  |  |  |  |  |
| 2015             | 25,200              | 2,088                                             | 9,028,629  | 4,324 |  |  |  |  |  |
| 2016             | 26,700              | 2,194                                             | 9,779,132  | 4,458 |  |  |  |  |  |
| 2017             | 25,300              | 2,063                                             | 9,477,060  | 4,594 |  |  |  |  |  |
| 2018             | 24,500              | 1,983                                             | 9,378,997  | 4,733 |  |  |  |  |  |
| 2019             | 23,900              | 1,933                                             | 8,988,618  | 4,724 |  |  |  |  |  |
| 2020             | 24,200              | 1,709                                             | 7,810,625  | 4,749 |  |  |  |  |  |
| Total            | 149,800             | 11,970                                            | 54,463,061 |       |  |  |  |  |  |

You have noticed that the ultimate severity from the development method is not equal to the development method ultimate claims divided by the development method ultimate counts in this case.



(a) (0.5 points) Explain why this may happen when using the development-based frequency-severity method.

ANSWER:

(b) (2.5 points) Recommend a claim frequency at the accident year 2020 cost level. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (*1 point*) Calculate ultimate claims using the development-based frequency-severity method and the recommended claim frequency from part (b).

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information for calculating unpaid ULAE for this line of business:

|                        | 12     | 24    | 36    | 48    | 60    | 72    |
|------------------------|--------|-------|-------|-------|-------|-------|
| Cumulative paid claims |        |       |       |       |       |       |
| development factors by |        |       |       |       |       |       |
| maturity age (months)  | 11.245 | 2.017 | 1.228 | 1.063 | 1.010 | 1.000 |

| Calendar<br>Year | Paid ULAE |
|------------------|-----------|
| 2017             | 738,905   |
| 2018             | 851,350   |
| 2019             | 883,245   |
| 2020             | 879,224   |
| Total            | 3,352,724 |

- Ultimate claims are selected from the development-based frequency-severity method.
- You are using the classical paid method with a Mango-Allen smoothing adjustment to estimate unpaid ULAE.
- Approximately 25% of claim department expenses relate to opening a claim file and 75% relate to maintaining and closing a claim file.
- The total case estimate is 4,351,459.
- The total IBNR is 11,117,813.
- (d) (1.5 points) Calculate the expected claims paid for calendar years 2017 through 2020.

Provide the response for this part in the Excel spreadsheet.



(e) (*1 point*) Recommend a ULAE ratio using the classical paid-to-paid method with the Mango-Allen smoothing adjustment. Justify your recommendation.

Provide the response for this part in the Excel spreadsheet.

(f) (0.5 points) Calculate the unpaid ULAE.

*Provide the response for this part in the Excel spreadsheet.* 



## GIRR Spring 2021 Question 4 (LOs 3i, 4a)

### **Learning Outcomes:**

- (3i) Assess the appropriateness of the projection methods cited in (e) in varying circumstances.
- (4a) Describe the key assumptions underlying ratio and count-based methods for estimating unpaid unallocated loss adjustment expenses.

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 22 and 23.

## Question:

# 4.

(5 *points*) You are an insurance company actuary reviewing year-end reserves for a line of business with the following characteristics:

- The coverage is long-tailed.
- There are five years of company experience available including exposure, premium, rate changes, paid and reported claims, closed and reported claim counts, and paid ULAE.
- Business has been growing steadily over the last five years.
- The annual claim trend is 2%.
- Tort reform was implemented two years ago.
- Industry experience is available for a comparable coverage.
- (a) (*1 point*) Explain why the development method may not be appropriate for estimating unpaid claims for this coverage.

ANSWER:

(b) (2 points) Recommend an appropriate method for estimating unpaid claims for this coverage. Justify your recommendation.

ANSWER:

(c) (*1 point*) Explain why the classical paid-to-paid method may not be appropriate for estimating unpaid ULAE for this coverage.



(d) (*1 point*) Recommend an appropriate method for estimating unpaid ULAE for this coverage. Justify your recommendation.



# GIRR Spring 2021 Question 9 (LOs 3d, 3f, 3g)

# **Learning Outcomes:**

- (3d) Analyze development triangles for investigative testing.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).

## **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 14 and 20.

### Question:

# 9.

(6 points) As part of your investigations into IBNR reserves, you are conducting investigative tests for changing levels of case reserve adequacy. You are given the following information:

| Accident | <b>Reported Claims (000)</b> |        |        |        |        |  |
|----------|------------------------------|--------|--------|--------|--------|--|
| Year     | 12                           | 24     | 36     | 48     | 60     |  |
| 2016     | 32,000                       | 54,000 | 61,400 | 70,240 | 76,000 |  |
| 2017     | 34,827                       | 58,270 | 65,388 | 74,040 |        |  |
| 2018     | 35,998                       | 61,348 | 72,363 |        |        |  |
| 2019     | 37,820                       | 67,306 |        |        |        |  |
| 2020     | 44,192                       |        |        |        |        |  |

| Accident | Paid Claims (000) |        |        |        |        |  |
|----------|-------------------|--------|--------|--------|--------|--|
| Year     | 12                | 24     | 36     | 48     | 60     |  |
| 2016     | 24,400            | 42,800 | 57,600 | 65,000 | 72,400 |  |
| 2017     | 25,965            | 45,571 | 61,341 | 69,225 |        |  |
| 2018     | 28,075            | 49,276 | 66,327 |        |        |  |
| 2019     | 28,824            | 50,626 |        |        |        |  |
| 2020     | 30,891            |        |        |        |        |  |



| Accident | Reported Counts |       |       |       |       |  |
|----------|-----------------|-------|-------|-------|-------|--|
| Year     | 12              | 24    | 36    | 48    | 60    |  |
| 2016     | 1,040           | 1,320 | 1,480 | 1,540 | 1,600 |  |
| 2017     | 1,061           | 1,346 | 1,510 | 1,571 |       |  |
| 2018     | 1,113           | 1,413 | 1,585 |       |       |  |
| 2019     | 1,091           | 1,385 |       |       |       |  |
| 2020     | 1,136           |       |       |       |       |  |

| Accident |     | Closed Counts |       |       |       |  |  |
|----------|-----|---------------|-------|-------|-------|--|--|
| Year     | 12  | 24            | 36    | 48    | 60    |  |  |
| 2016     | 792 | 1,092         | 1,284 | 1,392 | 1,540 |  |  |
| 2017     | 808 | 1,114         | 1,310 | 1,420 |       |  |  |
| 2018     | 848 | 1,169         | 1,375 |       |       |  |  |
| 2019     | 831 | 1,146         |       |       |       |  |  |
| 2020     | 865 |               |       |       |       |  |  |

- The annual severity trend is 5%.
- There is no development after 60 months.
- (a) (1.5 points) Calculate the average case estimate triangle.

*Provide the response for this part in the Excel spreadsheet.* 

(b) (*1 point*) Evaluate whether the average case estimate triangle indicates either decreasing, increasing or stable case reserve adequacy.

Provide the response for this part in the Excel spreadsheet.

You have decided to estimate IBNR using the development method with a Berquist-Sherman adjustment.

(c) (*3 points*) Calculate IBNR by accident year using the reported development method, with a Berquist-Sherman adjustment.

*Provide the response for this part in the Excel spreadsheet.* 

(d) (0.5 points) Explain why the reported development method without a Berquist-Sherman adjustment would have overstated the IBNR.

ANSWER:

Version 2025-1



# GIRR Spring 2021 Question 14 (LOs 2d, 3g)

### **Learning Outcomes:**

- (2d) Adjust historical earned premiums to current rate levels.
- (3g) Estimate ultimate values using the methods cited in (3e).

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13, 17, and 19.

## **Question:**

# 14.

| (8 points) You are | given the following information for estimating ultimate claims as of December | er |
|--------------------|-------------------------------------------------------------------------------|----|
| 31, 2020:          |                                                                               |    |

| Accident<br>Year | Earned<br>Premiums | Paid Claims as of<br>December 31, 2020 | Cumulative<br>Development<br>Factors | Projected Ultimate<br>Claims from<br>Development Method |
|------------------|--------------------|----------------------------------------|--------------------------------------|---------------------------------------------------------|
| 2011             | 5,787,959          | 4,930,400                              | 1.036                                | 5,107,894                                               |
| 2012             | 5,275,346          | 4,273,000                              | 1.081                                | 4,619,113                                               |
| 2013             | 4,875,955          | 2,896,000                              | 1.156                                | 3,347,776                                               |
| 2014             | 4,823,604          | 2,864,600                              | 1.279                                | 3,663,823                                               |
| 2015             | 5,128,880          | 2,447,000                              | 1.424                                | 3,484,528                                               |
| 2016             | 5,398,707          | 1,780,460                              | 1.803                                | 3,210,169                                               |
| 2017             | 5,175,419          | 1,395,000                              | 2.530                                | 3,529,350                                               |
| 2018             | 4,771,338          | 829,600                                | 3.801                                | 3,153,310                                               |
| 2019             | 4,563,448          | 396,900                                | 7.316                                | 2,903,720                                               |
| 2020             | 4,919,527          | 180,900                                | 22.168                               | 4,010,191                                               |

| Rate Change History |             |  |  |  |
|---------------------|-------------|--|--|--|
| Effective Date      | Rate Change |  |  |  |
| January 1, 2013     | 6%          |  |  |  |
| July 1, 2016        | -3%         |  |  |  |
| January 1, 2020     | 5%          |  |  |  |

- All policies are annual and are written and earned evenly throughout the year.
- Tort reform resulted in an estimated claim decrease of 20% for all accidents occurring on or after July 1, 2014.
- The annual claim trend is 0%.



(a) (1.5 points) Calculate premium on-level factors for all accident years for projecting claim ratios as of December 31, 2020.

*The response for this part is to be provided in the Excel spreadsheet.* 

(b) (3.5 points) Calculate projected ultimate claims for all accident years using the expected method.

*The response for this part is to be provided in the Excel spreadsheet.* 

(c) (*3 points*) Calculate projected ultimate claims for all accident years using the Cape Cod method.

*The response for this part is to be provided in the Excel spreadsheet* 



## GIRR Spring 2021 Question 15 (LOs 3h, 3i)

#### **Learning Outcomes:**

- (3h) Explain the effect of changing conditions on the projection methods cited in (3e).
- (3i) Assess the appropriateness of the projection methods cited in (3e) in varying circumstances.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 21.

## **Question:**

# 15.

(4 points) You are reviewing estimates of ultimate claims for two books of business where conditions have been changing.

Book of business 1:

- This book is comprised of package policies combining property and liability coverages.
- The liability claims have been increasing at a faster rate than property claims in the most recent three accident years. This change was anticipated and has been appropriately reflected in rates.

Book of business 2:

- This book is comprised of liability coverage only.
- Claim ratios have increased unexpectedly in the most recent two accident years due to an increase in claim frequency which was not anticipated in rates.
- Also, an unusually large claim has been reported in the current accident year.
- (a) (2 points) Explain how the changes occurring to book of business 1 might influence the estimates of ultimate claims under each of the following methods:
  - (i) The Bornhuetter Ferguson method
  - (ii) The frequency-severity method



- (b) (2 points) Explain how the changes occurring to book of business 2 might influence the estimates of ultimate claims under each of the following methods:
  - (i) The development method applied to reported claims
  - (ii) The Cape Cod method applied to reported claims



# GIRR Spring 2021 Question 19 (LOs 3e, 3g, 3j)

## **Learning Outcomes:**

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).
- (3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 15, 18, and 22.

## **Question:**

# 19.

## (5 points)

(a) (*1 point*) Describe two situations when the Bornhuetter Ferguson method may be preferable to the development method.

ANSWER:

You are given the following information for the purpose of estimating unpaid claims for an automobile insurance line of business:

|                  | Earned            | Cumulative Paid Claims (000) |       |        |        |        |        |
|------------------|-------------------|------------------------------|-------|--------|--------|--------|--------|
| Accident<br>Year | Premiums<br>(000) | 12                           | 24    | 36     | 48     | 60     | 72     |
| 2015             | 23,313            | 5,108                        | 8,571 | 11,226 | 12,960 | 13,912 | 14,520 |
| 2016             | 22,459            | 5,241                        | 8,759 | 11,451 | 13,129 | 14,071 |        |
| 2017             | 22,525            | 5,436                        | 8,640 | 11,222 | 12,825 |        |        |
| 2018             | 21,688            | 5,787                        | 9,153 | 11,822 |        |        |        |
| 2019             | 20,743            | 5,103                        | 7,968 |        |        |        |        |
| 2020             | 17,850            | 3,370                        |       |        |        |        |        |

- The tail factor at 72 months is 1.100.
- The a priori claim ratio for accident years 2015 to 2019 is 65%.



- The a priori claim ratio for accident year 2020 is 60% reflecting a lower expected claim frequency during COVID stay-at-home orders.
- (b) (*1 point*) Select age-to-age development factors to be used in applying the development method.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (*1 point*) Estimate ultimate claim ratios as of December 31, 2020 for all accident years using the development method and selections from part (b).

*Provide the response for this part in the Excel spreadsheet.* 

(d) (*1 point*) Estimate ultimate claim ratios as of December 31, 2020 for all accident years using the Bornhuetter Ferguson method.

*Provide the response for this part in the Excel spreadsheet.* 

(e) (*1 point*) Recommend unpaid claims by accident year as of December 31, 2020. Justify your recommendations.

*Provide the response for this part in the Excel spreadsheet.* 



# GIRR Fall 2021 Question 2 (LOs 3a, 3e, 3f, 3g)

## **Learning Outcomes:**

- (3a) Identify considerations for selecting methods for estimating ultimate claims.
- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 15, 17 and 18.

## **Question:**

# 2.

(7 points)

(a) (0.5 points) Describe one advantage of using the pure premium approach to the expected method, rather than the claim ratio approach.

ANSWER:

(b) (0.5 points) Describe why reinsurers typically use the claim ratio approach to the expected method, rather than the pure premium approach.

ANSWER:

(c) (0.5 points) Describe why reinsurers often use the expected method rather than the development method.

ANSWER:

The effect of leveraged actuarial factors should be considered when projecting ultimate claims.

Version 2025-1



(d) (*1 point*) Contrast the leveraged nature of cumulative development factors with the leveraged nature of trend factors.



(e) (0.5 points) Describe one approach the actuary may consider to moderate the leveraging effect of actuarial factors.

ANSWER:

You are given the following information to estimate ultimate claims as of December 31, 2020.

| Report | Earned    | Actual<br>Reported | Cumulative<br>Development |
|--------|-----------|--------------------|---------------------------|
| Year   | Exposures | Claims             | Factors                   |
| 2013   | 12,603    | 12,974,000         | 1.042                     |
| 2014   | 13,190    | 13,846,250         | 1.087                     |
| 2015   | 13,631    | 14,074,250         | 1.149                     |
| 2016   | 13,988    | 13,332,300         | 1.235                     |
| 2017   | 15,364    | 14,057,100         | 1.351                     |
| 2018   | 15,949    | 13,586,400         | 1.515                     |
| 2019   | 16,270    | 12,601,600         | 1.754                     |
| 2020   | 16,468    | 10,118,900         | 2.128                     |
| Total  | 117,464   | 104,590,800        |                           |

The annual claim trend is 3%.

(f) (2 points) Calculate ultimate claims using the pure premium approach to the expected method.

*The response for this part is to be provided in the Excel spreadsheet.* 

(g) (*1 point*) Calculate ultimate claims using the Bornhuetter Ferguson method, where the a priori expected claims are the estimated ultimate claims from the expected method in part (f).

The response for this part is to be provided in the Excel spreadsheet.

(h) (*1 point*) Evaluate the reasonableness of the inputs for the Bornhuetter Ferguson method in part (g).

The response for this part is to be provided in the Excel spreadsheet.



# GIRR Fall 2021 Question 6 (LOs 1d, 1f, 3g, 3j)

### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (1f) Demonstrate the importance of understanding key terminology and interrelationships.
- (3g) Estimate ultimate values using the methods cited in (3e).
- (3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 16 and 22.

## **Question:**

# 6.

## (4 points)

(a) (0.5 points) Describe what an *actuarial central estimate* represents according to U.S. ASOPs.

ANSWER:

(b) (0.5 points) Assess the validity of the following statement:

"Credibility is not utilized in projecting unpaid claims for reserving."



You are given the following information as of December 31, 2020 for a general liability line of business:

|                  |                    | Projected Ultimate Claims Based on<br>Frequency-Severity Method |               |  |  |  |
|------------------|--------------------|-----------------------------------------------------------------|---------------|--|--|--|
| Accident<br>Year | Earned<br>Premiums | Development<br>Based                                            | Claim Closure |  |  |  |
| 2015             | 7,770,781          | 5,053,162                                                       | 5,053,487     |  |  |  |
| 2016             | 8,054,874          | 5,508,456                                                       | 5,506,686     |  |  |  |
| 2017             | 8,669,122          | 5,901,592                                                       | 5,867,259     |  |  |  |
| 2018             | 9,068,601          | 6,242,941                                                       | 6,305,001     |  |  |  |
| 2019             | 9,896,451          | 6,826,075                                                       | 7,055,995     |  |  |  |
| 2020             | 10,833,340         | 7,153,796                                                       | 7,378,065     |  |  |  |

You are also given the following diagnostic results:

| Accident |       | <b>Reported Claim Ratios</b> |       |       |       |       |  |  |
|----------|-------|------------------------------|-------|-------|-------|-------|--|--|
| Year     | 12    | 24                           | 36    | 48    | 60    | 72    |  |  |
| 2015     | 52.7% | 58.1%                        | 61.3% | 63.3% | 64.4% | 65.0% |  |  |
| 2016     | 54.7% | 60.9%                        | 65.3% | 66.4% | 67.7% |       |  |  |
| 2017     | 54.9% | 61.3%                        | 65.7% | 66.5% |       |       |  |  |
| 2018     | 56.8% | 63.9%                        | 65.8% |       |       |       |  |  |
| 2019     | 56.1% | 63.6%                        |       |       |       |       |  |  |
| 2020     | 55.2% |                              |       |       |       |       |  |  |

(c) (*1 point*) Calculate the indicated IBNR as of December 31, 2020 for each of the frequencyseverity method projections above.

The response for this part is to be provided in the Excel spreadsheet.

You are given the following IBNR estimates for an auto insurer's bodily injury liability claims:

|          |          | IBNR Claim Estimates (000) |            |             |  |  |  |  |
|----------|----------|----------------------------|------------|-------------|--|--|--|--|
| Accident | Developm | ent Method                 | Bornhuette | er Ferguson |  |  |  |  |
| Year     | Paid     | Paid Reported              |            | Reported    |  |  |  |  |
| 2016     | 2,852    | 2,628                      | 2,825      | 2,650       |  |  |  |  |
| 2017     | 4,103    | 4,218                      | 4,185      | 4,235       |  |  |  |  |
| 2018     | 4,352    | 6,318                      | 4,161      | 5,511       |  |  |  |  |
| 2019     | 8,072    | 7,317                      | 7,767      | 7,467       |  |  |  |  |
| 2020     | 11,835   | 10,664                     | 11,409     | 11,109      |  |  |  |  |

- A large claim was reported in accident year 2018.
- The case estimate on the large claim appears adequate.



- The large claim remains unpaid as of December 31, 2020.
- None of the methods have an explicit adjustment for the large claim.

Company management has asked you to recommend an accident year 2018 IBNR reserve as of December 31, 2020.

- (d) (2 points) Critique the appropriateness of each method as a potential IBNR selection for accident year 2018.
  - (v) Paid development method
  - (vi) Reported development method
  - (vii) Paid Bornhuetter Ferguson method
  - (viii) Reported Bornhuetter Ferguson method

The response for this part is to be provided in the Excel spreadsheet.



## GIRR Fall 2021 Question 11 (LOs 3e, 3g)

## **Learning Outcomes:**

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

## **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 15.

## Question:

# 11.

(4 points) You are given the following information:

| Accident | Earned    | Reported<br>Claims as of | Projected Ult<br>on Developm |        |
|----------|-----------|--------------------------|------------------------------|--------|
| Year     | Exposures | Dec. 31, 2020            | Claims                       | Counts |
| 2014     | 8,184     | 10,004,008               | 10,004,008                   | 347    |
| 2015     | 8,526     | 10,840,679               | 10,924,953                   | 364    |
| 2016     | 8,548     | 11,298,364               | 11,580,235                   | 367    |
| 2017     | 8,903     | 12,069,806               | 12,667,017                   | 384    |
| 2018     | 9,147     | 12,334,362               | 13,668,559                   | 399    |
| 2019     | 9,365     | 11,346,431               | 14,692,016                   | 407    |
| 2020     | 9,542     | 5,778,161                | 16,270,027                   | 436    |

- For claims occurring prior to 2020, the following trends were observed for this line of business:
  - Annual severity trend of 4.7%
  - $\circ$  Annual frequency trend of 0.5%
- There was a court ruling that expanded policy coverage for claims occurring in 2020. It was expected to increase claim frequency 6% over the trended historical average but have no effect on claim severity beyond the observed annual severity trend.
- (a) (2.5 points) Calculate the ultimate claims for accident year 2020 using the developmentbased frequency-severity method. Justify any selections.



(b) (0.5 points) Calculate the percentage growth in accident year 2020 IBNR in changing from the development method to the development-based frequency-severity method.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (*1 point*) Explain why the accident year 2020 IBNR calculated using the development-based frequency-severity method is likely to be more appropriate than the IBNR calculated using the development method.



## GIRR Fall 2021 Question 12 (LOs 3f, 3h, 3i)

#### **Learning Outcomes:**

- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3h) Explain the effect of changing conditions on the projection methods cited in (3e).
- (3i) Assess the appropriateness of the projection methods cited in (3e) in varying circumstances.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 21 and 22.

## Question:

# 12.

(5 *points*) Diagnostic reviews can be valuable for actuaries when evaluating projections and selecting ultimate claims.

(a) (*1 point*) Describe two diagnostics that can be used to confirm the reasonableness of projected ultimate claims.

ANSWER:

You are analyzing a reported development triangle for a products liability coverage where statelegislated tort reform effective two years ago capped the cost of large claims reported after the effective date of the legislation. All other aspects of the business are in a steady-state environment.

- (b) (*1 point*) Explain what effect the tort reform is likely to have on reported claim development factors if the data is organized as follows:
  - (iii) On an accident year basis.
  - (iv) On a report year basis.

ANSWER: (i) (ii)



(c) (*1 point*) Recommend a preferred approach to estimating ultimate claims for each scenario in part (b). Justify your recommendation.

| ANSWER: |  |  |
|---------|--|--|
| (i)     |  |  |
| (ii)    |  |  |

You are given the following method results for a line of business:

|                          |              |                  | Projected Ultimate Claims                         |                                     |                                  |                                                               |  |
|--------------------------|--------------|------------------|---------------------------------------------------|-------------------------------------|----------------------------------|---------------------------------------------------------------|--|
| Accident<br>Year<br>(AY) | Paid<br>CDFs | Reported<br>CDFs | Expected<br>Method:<br>Reported<br>Claim<br>Ratio | Development<br>Method: Paid<br>Data | Cape Cod<br>Method:<br>Paid Data | Bornhuetter<br>Ferguson<br>Method:<br>Reported<br>Claim Ratio |  |
| 2013                     | 1.055        | 1.007            | 6,303,396                                         | 6,710,368                           | 6,696,546                        | 6,422,916                                                     |  |
| 2014                     | 1.133        | 1.014            | 7,212,445                                         | 7,610,141                           | 7,586,251                        | 7,274,264                                                     |  |
| 2015                     | 1.181        | 1.049            | 7,832,913                                         | 8,094,627                           | 8,081,606                        | 7,797,684                                                     |  |
| 2016                     | 1.356        | 1.117            | 8,716,621                                         | 8,868,690                           | 8,880,447                        | 8,570,436                                                     |  |
| 2017                     | 1.660        | 1.212            | 9,846,962                                         | 9,461,628                           | 9,703,338                        | 9,719,451                                                     |  |
| 2018                     | 2.223        | 1.373            | 10,649,381                                        | 10,822,452                          | 10,859,544                       | 10,648,168                                                    |  |
| 2019                     | 4.265        | 1.862            | 11,950,431                                        | 11,666,839                          | 12,090,525                       | 12,025,016                                                    |  |
| 2020                     | 10.807       | 3.068            | 13,289,524                                        | 11,985,818                          | 13,441,214                       | 13,235,975                                                    |  |
| Total                    |              |                  | 75,801,673                                        | 75,220,563                          | 77,339,471                       | 75,693,910                                                    |  |

• Based on the results of diagnostic testing for this line of business, the data includes a change in case outstanding adequacy.

You are given four accident year selections as follows:

- (i) AY2013: Bornhuetter Ferguson method using reported claim ratio data
- (ii) AY2016: Cape Cod method using paid claim data
- (iii) AY2019: Development method using paid claim data
- (iv) AY2020: Expected method using reported claim ratio data
- (d) (2 points) Assess the appropriateness of each selection (i) to (iv).



## GIRR Fall 2021 Question 16 (LOs 2a, 3c, 3d)

### **Learning Outcomes:**

- (2a) Create development triangles of claims and counts from detailed claim transaction data.
- (3c) Identify the types of development triangles that can be used for investigative testing.
- (3d) Analyze development triangles for investigative testing.

## **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 11 and 14.

## Question:

# 16.

## (7 points)

(a) (0.5 points) Define "maturity age" in the context of a claim development triangle.

ANSWER:

You are given the following claim information.

| Claim     |                       | In     | cremental | Paid Clai | ms     |        |
|-----------|-----------------------|--------|-----------|-----------|--------|--------|
| ID        | 2018H1                | 2018H2 | 2019H1    | 2019H2    | 2020H1 | 2020H2 |
| Occurrent | ce Year: 2            | 018    |           |           |        |        |
| 1         | 0                     | 100    | 250       | 0         | 0      | 75     |
| 2         | 50                    |        |           |           |        |        |
| 3         |                       |        |           | 0         | 55     | 0      |
| 4         |                       |        |           |           |        |        |
| Occurrent | ce Year: 2            | 019    |           |           |        |        |
| 5         |                       |        | 190       | 0         | 30     |        |
| 6         |                       |        |           | 0         | 0      |        |
| 7         |                       |        | 75        | 0         | 0      | 185    |
| Occurrent | Occurrence Year: 2020 |        |           |           |        |        |
| 8         |                       |        |           |           | 0      | 0      |
| 9         |                       |        |           |           | 0      | 100    |
| 10        |                       |        |           |           | 0      | 175    |



| Claim    | Ca         | se Estima | tes at the | End of Ea | ch Half Y | ear    |
|----------|------------|-----------|------------|-----------|-----------|--------|
| ID       | 2018H1     | 2018H2    | 2019H1     | 2019H2    | 2020H1    | 2020H2 |
| Occurren | ce Year: 2 | 018       |            |           |           |        |
| 1        | 150        | 200       | 75         | 75        | 75        | 0      |
| 2        | 0          |           |            |           |           |        |
| 3        |            |           |            | 315       | 260       | 260    |
| 4        |            |           |            |           | 75        | 90     |
| Occurren | ce Year: 2 | 019       |            |           |           |        |
| 5        |            |           | 35         | 35        | 0         |        |
| 6        |            |           |            | 225       | 0         |        |
| 7        |            |           | 0          | 0         | 225       | 0      |
| Occurren | ce Year: 2 | 020       |            |           |           |        |
| 8        |            |           |            |           | 250       | 65     |
| 9        |            |           |            |           | 25        | 0      |
| 10       |            |           |            |           | 275       | 0      |

(b) (*3 points*) Construct a development triangle of cumulative reported claims, by accident year, with maturity ages 6, 12, 18, 24, 30 and 36 months.

*The response for this part is to be provided in the Excel spreadsheet.* 

The above claim information provides claims from the following three lines of business:

- Medical malpractice
- Workers' compensation
- Automobile physical damage
- (c) (1.5 points) Select which line of business was the likely source for each of the following claims, providing a justification for each selection:
  - (iv) Claim 2
  - (v) Claim 3
  - (vi) Claim 7

The response for this part is to be provided in the Excel spreadsheet.



| Accident |     | Reported Pure Premiums |     |     |     |     |     |     |
|----------|-----|------------------------|-----|-----|-----|-----|-----|-----|
| Year     | 12  | 24                     | 36  | 48  | 60  | 72  | 84  | 96  |
| 2013     | 199 | 295                    | 394 | 471 | 545 | 586 | 620 | 637 |
| 2014     | 196 | 293                    | 393 | 469 | 544 | 626 | 618 |     |
| 2015     | 170 | 257                    | 344 | 419 | 485 | 521 |     |     |
| 2016     | 168 | 258                    | 346 | 424 | 494 |     |     |     |
| 2017     | 178 | 280                    | 377 | 468 |     |     |     |     |
| 2018     | 190 | 300                    | 408 |     |     |     |     |     |
| 2019     | 202 | 321                    |     |     |     |     |     |     |
| 2020     | 271 |                        |     |     |     |     |     |     |

You are given the following general liability development triangle for investigative analysis.

(d) (*1 point*) Identify two anomalies relating to this triangle.

*The response for this part is to be provided in the Excel spreadsheet.* 

(e) (*1 point*) Describe a business, operational, or environmental change that could cause each of the anomalies identified in part (d).

The response for this part is to be provided in the Excel spreadsheet.



## GIRR Fall 2021 Question 18 (LOs 1d, 3f, 3g, 4a, 4b)

### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).
- (4a) Describe the key assumptions underlying ratio and count-based methods for estimating unpaid unallocated loss adjustment expenses.
- (4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 15, and 23.

## **Question:**

## 18.

(6 points) You are projecting ultimate claims as of December 31, 2020 using the paid development method and are given the following data:

| Accident | 0   | Paid Claims (000) |       |       |       |       |       |       |
|----------|-----|-------------------|-------|-------|-------|-------|-------|-------|
| Year     | 12  | 24                | 36    | 48    | 60    | 72    | 84    | 96    |
| 2013     | 162 | 517               | 866   | 1,171 | 1,402 | 1,573 | 1,716 | 1,824 |
| 2014     | 171 | 523               | 875   | 1,142 | 1,372 | 1,565 | 1,712 |       |
| 2015     | 182 | 518               | 876   | 1,169 | 1,424 | 1,610 |       |       |
| 2016     | 190 | 543               | 923   | 1,219 | 1,460 |       |       |       |
| 2017     | 198 | 540               | 1,082 | 1,391 |       |       |       |       |
| 2018     | 205 | 560               | 968   |       |       |       |       |       |
| 2019     | 211 | 573               |       |       |       |       |       |       |
| 2020     | 224 |                   |       |       |       |       |       |       |

| Accident<br>Year | 12-24 | 24-36 | 36-48 | 48-60 | 60-72 | 72-84 | 84-96 |
|------------------|-------|-------|-------|-------|-------|-------|-------|
| 2013             | 3.191 | 1.675 | 1.352 | 1.197 | 1.122 | 1.091 | 1.063 |
| 2014             | 3.058 | 1.673 | 1.305 | 1.201 | 1.141 | 1.094 |       |
| 2015             | 2.846 | 1.691 | 1.334 | 1.218 | 1.131 |       |       |
| 2016             | 2.858 | 1.700 | 1.321 | 1.198 |       |       |       |
| 2017             | 2.727 | 2.004 | 1.286 |       |       |       |       |
| 2018             | 2.732 | 1.729 |       |       |       |       |       |
| 2019             | 2.716 |       |       |       |       |       |       |



Accident year 2017 includes a large claim of 150,000 paid and closed on March 15, 2019. The claim was unusual, and a similar claim is not likely to occur.

(a) (*1 point*) Select age-to-age development factors for all periods excluding the tail factor. Justify your selections.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

| Accident | Projected Ultimate Claims<br>from Reported |
|----------|--------------------------------------------|
| Year     | <b>Development Method (000)</b>            |
| 2013     | 1,975                                      |
| 2014     | 1,974                                      |
| 2015     | 2,032                                      |
| 2016     | 2,078                                      |
| 2017     | 2,234                                      |
| 2018     | 2,216                                      |
| 2019     | 2,261                                      |
| 2020     | 2,295                                      |
| Total    | 17,065                                     |

(b) (1.5 points) Derive a paid tail factor using Boor's algebraic method.

*Provide the response for this part in the Excel spreadsheet.* 

Subsequently, the Chief Actuary provides you with an alternative tail factor of 1.072 based on industry benchmark data.

(c) (*1 point*) Calculate ultimate claims using the paid development method and the tail factor of 1.072.

Provide the response for this part in the Excel spreadsheet.

You are given the following additional information for estimating ULAE:

- Selected ultimate claims for each accident year are based on the results from the reported development method shown above (and not the paid development method).
- Actual reported claims as of December 31, 2020 are 14,660,000.

Version 2025-1



- The selected ratio of calendar year paid unallocated loss adjustment expenses (ULAE) to paid claims is 8%.
- (d) (*1 point*) Calculate the unpaid ULAE as of December 31, 2020 using the classical paid-to-paid method and a multiplier of 50%.

Provide the response for this part in the Excel spreadsheet.

(e) (*l point*) Describe the Kittel refinement to the classical paid-to-paid method and the weakness it is designed to address.

*Provide the response for this part in the Excel spreadsheet.* 

(f) (0.5 points) Describe the Mango and Allen smoothing adjustment.



## GIRR Spring 2022 Question 2 (LOs 1d, 2a, 3c, 3d)

### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (2a) Create development triangles of claims and counts from detailed claim transaction data.
- (3c) Identify the types of development triangles that can be used for investigative testing.
- (3d) Analyze development triangles for investigative testing.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 11 and 14.

## Question:

# 2.

(7 points) You are given the following claim information evaluated as of December 31, 2021.

| Accident | Reported Claims (000) |       |       |       |  |  |  |  |  |
|----------|-----------------------|-------|-------|-------|--|--|--|--|--|
| Year     | 12                    | 24    | 36    | 48    |  |  |  |  |  |
| 2018     | 1,196                 | 1,525 | 1,638 | 1,723 |  |  |  |  |  |
| 2019     | 1,269                 | 1,607 | 1,908 |       |  |  |  |  |  |
| 2020     | 1,294                 | 1,707 |       |       |  |  |  |  |  |
| 2021     | 1,451                 |       |       |       |  |  |  |  |  |

| Accident | <b>Reported Counts</b> |     |     |     |  |  |  |
|----------|------------------------|-----|-----|-----|--|--|--|
| Year     | 12                     | 24  | 36  | 48  |  |  |  |
| 2018     | 230                    | 250 | 260 | 265 |  |  |  |
| 2019     | 235                    | 255 | 265 |     |  |  |  |
| 2020     | 231                    | 251 |     |     |  |  |  |
| 2021     | 234                    |     |     |     |  |  |  |

You are also informed that the following six claim transactions were not captured in the triangles due to a system error.

| Trans<br># | Claim<br>ID | Transaction<br>Date | Transaction<br>Description     | Occurrence<br>Date | Case<br>Estimate<br>(000) | Indemnity<br>Payment<br>(000) | ALAE<br>Payment<br>(000) |
|------------|-------------|---------------------|--------------------------------|--------------------|---------------------------|-------------------------------|--------------------------|
| 1          | 1020        | May 17, 2019        | Open new claim file            | Apr. 27, 2018      | 10                        | 5                             |                          |
| 2          | 1377        | Nov. 3, 2019        | Open & close new<br>claim file | Sep. 15, 2019      |                           | 50                            | 25                       |
| 3          | 1944        | Jan. 2, 2021        | Close reported claim<br>file   | Sep. 15, 2019      | -25                       | 10                            | 5                        |
| 4          | 2135        | Feb. 28, 2021       | Change in case estimate        | Jan. 6, 2020       | 65                        |                               |                          |
| 5          | 2260        | Apr. 24, 2021       | Open new claim file            | Feb. 3, 2018       | 20                        |                               |                          |
| 6          | 2260        | June 5, 2021        | Close reported claim<br>file   | Feb. 3, 2018       | -20                       |                               | 20                       |

(a) (4 *points*) Update both development triangles shown above to include the claim transactions not captured due to the system error.

*The response for this part is to be provided in the Excel spreadsheet.* 



(b) (0.5 points) Determine calendar year 2021 reported claims.

*The response for this part is to be provided in the Excel spreadsheet.* 

Accident year 2021 paid claims and ALAE evaluated as of December 31, 2021, were 800,000.

(c) (0.5 points) Determine case reserves as of December 31, 2021, for accident year 2021 only.

The response for this part is to be provided in the Excel spreadsheet.

You are subsequently given a variety of corrected claim and count triangles and have been asked to conduct investigative tests.

- (d) (*1 point*) Describe the investigative tests you would recommend using for the following independent situations:
  - (i) The claim department implemented a new definition of claims to distinguish between reported incidents that are valid claims and incidents not covered under the insurance policy.
  - (ii) The claim department implemented a new initiative to increase their use of partial settlements.

The response for this part is to be provided in the Excel spreadsheet.

During investigative testing, you observe an increase in average reported claims, with changes greater than the rate of trend going down each column (from accident year to accident year). However, the reported counts are stable.

(e) (*1 point*) Provide two examples of company operational changes that could cause an increase in average reported claims without affecting reported counts.

The response for this part is to be provided in the Excel spreadsheet.



## GIRR Spring 2022 Question 8 (LOs 3c, 3d, 3e, 3g)

### **Learning Outcomes:**

- (3c) Identify the types of development triangles that can be used for investigative testing.
- (3d) Analyze development triangles for investigative testing.
- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

## **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 14 and 20.

## **Question:**

## 8.

| Accident |            | Reported Claims |            |            |            |            |  |  |  |  |  |  |
|----------|------------|-----------------|------------|------------|------------|------------|--|--|--|--|--|--|
| Year     | 12         | 24              | 36         | 48         | 60         | 72         |  |  |  |  |  |  |
| 2016     | 30,847,710 | 36,970,980      | 39,804,500 | 49,934,760 | 50,877,310 | 43,481,120 |  |  |  |  |  |  |
| 2017     | 34,029,400 | 38,856,540      | 45,646,070 | 51,501,360 | 46,739,030 |            |  |  |  |  |  |  |
| 2018     | 38,734,090 | 40,177,840      | 47,328,140 | 47,597,670 |            |            |  |  |  |  |  |  |
| 2019     | 39,000,910 | 39,002,570      | 40,849,280 |            |            |            |  |  |  |  |  |  |
| 2020     | 41,845,080 | 39,427,380      |            |            |            |            |  |  |  |  |  |  |
| 2021     | 42,482,430 |                 |            |            |            |            |  |  |  |  |  |  |

(7 points) You are given the following information:

| Accident |            | Paid Claims |            |            |            |            |  |  |  |  |  |  |
|----------|------------|-------------|------------|------------|------------|------------|--|--|--|--|--|--|
| Year     | 12         | 24          | 36         | 48         | 60         | 72         |  |  |  |  |  |  |
| 2016     | 10,450,640 | 17,578,750  | 24,478,180 | 28,746,870 | 31,182,590 | 37,359,990 |  |  |  |  |  |  |
| 2017     | 10,463,190 | 18,205,500  | 24,401,580 | 30,144,600 | 36,751,040 |            |  |  |  |  |  |  |
| 2018     | 10,407,100 | 18,712,370  | 26,582,760 | 35,904,160 |            |            |  |  |  |  |  |  |
| 2019     | 10,849,930 | 20,766,690  | 33,573,290 |            |            |            |  |  |  |  |  |  |
| 2020     | 11,502,420 | 23,964,040  |            |            |            |            |  |  |  |  |  |  |
| 2021     | 12,921,930 |             |            |            |            |            |  |  |  |  |  |  |



| Accident | Reported Counts |       |       |       |       |       |  |  |
|----------|-----------------|-------|-------|-------|-------|-------|--|--|
| Year     | 12              | 24    | 36    | 48    | 60    | 72    |  |  |
| 2016     | 3,272           | 3,548 | 3,546 | 3,733 | 3,726 | 3,735 |  |  |
| 2017     | 3,275           | 3,513 | 3,608 | 3,693 | 3,722 |       |  |  |
| 2018     | 3,391           | 3,470 | 3,610 | 3,671 |       |       |  |  |
| 2019     | 3,271           | 3,417 | 3,576 |       |       |       |  |  |
| 2020     | 3,344           | 3,477 |       |       |       |       |  |  |
| 2021     | 3,290           |       |       |       |       |       |  |  |

| Accident |       | Closed Counts |       |       |       |       |  |  |  |
|----------|-------|---------------|-------|-------|-------|-------|--|--|--|
| Year     | 12    | 24            | 36    | 48    | 60    | 72    |  |  |  |
| 2016     | 1,993 | 2,497         | 2,881 | 2,922 | 3,021 | 3,548 |  |  |  |
| 2017     | 1,879 | 2,456         | 2,726 | 2,921 | 3,414 |       |  |  |  |
| 2018     | 1,801 | 2,425         | 2,796 | 3,307 |       |       |  |  |  |
| 2019     | 1,780 | 2,579         | 3,328 |       |       |       |  |  |  |
| 2020     | 1,803 | 2,863         |       |       |       |       |  |  |  |
| 2021     | 1,968 |               |       |       |       |       |  |  |  |

| Accident | Selected               |
|----------|------------------------|
| Year     | <b>Ultimate Counts</b> |
| 2016     | 3,735                  |
| 2017     | 3,731                  |
| 2018     | 3,691                  |
| 2019     | 3,707                  |
| 2020     | 3,707                  |
| 2021     | 3,693                  |

- The claims department has noted that starting in 2021, they increased case estimates and increased the rate of claims settlement.
- The annual claim severity trend is 5%.

There are several diagnostic tests that can be used to confirm that the case estimates have increased.

(a) (1.5 points) Verify that the case estimates have increased for this line of business using one diagnostic test.



(b) (*1 point*) Describe a different diagnostic test from the test performed in part (a) that may indicate that case estimates have increased for this line of business.

*Provide the response for this part in the Excel spreadsheet.* 

The disposal rates can be evaluated to determine if the rate of claims settlement has increased.

(c) (1.5 points) Evaluate the disposal rates for this line of business to confirm that the rate of claims settlement has increased.

*Provide the response for this part in the Excel spreadsheet.* 

(d) (0.5 points) Recommend disposal rates for each maturity age. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

(e) (2.5 points) Calculate the adjusted case estimate triangle for this line of business, adjusting for changes in both case estimates and settlement rates. Justify any selections you make.



## GIRR Spring 2022 Question 15 (LOs 3e, 3g)

#### Learning Outcomes:

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 18 and 19.

## **Question:**

# 15.

(6 points)

(a) (0.5 points) Describe one situation in which the Cape Cod method might be preferred over the Bornhuetter Ferguson method.

ANSWER:

(b) (0.5 points) Describe one situation in which the Generalized Cape Cod method might be preferred over the Cape Cod method.

ANSWER:

You are asked to project ultimate claims evaluated as of December 31, 2021, using the Cape Cod method. You are given the following information:



| Accident<br>Year | Earned<br>Premiums<br>(000) | Reported<br>Claims as of<br>Dec 31, 2021<br>(000) | Reported<br>Cumulative<br>Development<br>Factors |
|------------------|-----------------------------|---------------------------------------------------|--------------------------------------------------|
| 2013             | 29,614                      | 15,795                                            | 1.011                                            |
| 2014             | 27,371                      | 14,119                                            | 1.028                                            |
| 2015             | 27,077                      | 17,998                                            | 1.049                                            |
| 2016             | 28,792                      | 17,630                                            | 1.090                                            |
| 2017             | 30,307                      | 16,178                                            | 1.159                                            |
| 2018             | 29,053                      | 15,699                                            | 1.305                                            |
| 2019             | 26,785                      | 14,231                                            | 1.709                                            |
| 2020             | 25,618                      | 7,963                                             | 2.399                                            |
| 2021             | 27,616                      | 4,910                                             | 3.999                                            |
| Total            | 252,233                     | 124,522                                           |                                                  |

- All policies are annual, and they are written and earned evenly throughout the year.
- The annual claim trend is 2%.
- An unusual large claim of 3 million is reported in AY 2019. A similar sized claim is not expected to happen again.
- Rate change history:
  - $\circ$  A rate change of -2% was effective January 1, 2015.
  - A rate change of 4% was effective July 1, 2021.
- (c) (2 points) Calculate the adjusted expected claim ratio.

*Provide the response for this part in the Excel spreadsheet.* 

(d) (1.5 points) Calculate projected ultimate claims for all accident years.

*Provide the response for this part in the Excel spreadsheet.* 

(e) (1.5 points) Calculate expected claims for accident year 2021 using the Generalized Cape Cod approach and a decay factor of 80%.



## GIRR Spring 2022 Question 18 (LOs 3h, 3i, 3j)

### **Learning Outcomes:**

- (3h) Explain the effect of changing conditions on the projection methods cited in (3e).
- (3i) Assess the appropriateness of the projection methods cited in (3e) in varying circumstances.
- (3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 21 and 22.

## Question:

# 18.

(4 points) When conditions are changing, actuaries sometimes need to substitute one type of data for another type of data that is not affected by the change.

You currently use accident year claim and count development triangles to estimate ultimate claims. However, other policy and claim data are available.

- (a) (2 *points*) Describe a data substitution that you would make in your analysis to mitigate the problem for each of the following independent scenarios.
  - (i) There is a change in policy limits between successive policy years.
  - (ii) Exposure growth during the past two years has caused a distortion in recent development factors due to significant shifts in the average accident date within each accident year.
  - (iii) A tort reform change two years ago reduced the expected severity of many newly reported claims.
  - (iv) There has been a change in the definition of claim count you typically use for diagnostics.

ANSWER:

The company you are working for has experienced a recent shift in mix of business within its commercial multi-peril line of business. The severity of liability claims is increasing faster than

Version 2025-1



property claims. However, the company only captures aggregate claim data on a combined property/liability basis.

(b) (*1 point*) Describe the effect you expect this shift to have on an accident year claim triangle using reported claims.

VER:

(c) (*1 point*) Describe an approach to estimating ultimate claims for this business.



## GIRR Fall 2022 Question 6 (LOs 3g, 3j, 6b, 6c, 6d)

### **Learning Outcomes:**

- (3g) Estimate ultimate values using the methods cited in (3e).
- (3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).
- (6b) Identify the different types of rate regulatory approaches for general insurance.
- (6c) Describe the purpose of base rates and rating factors and explain how they are used to determine an insured's premium.
- (6d) Quantify different types of expenses required for ratemaking including expense trending procedures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 17, 18, 19, 21, 23, and 27.

## **Question:**

## **6**.

(12 points) You are estimating ultimate claims for a long-tailed line of business, and are given the following information:

| Accident | Earned    | on Reported<br>Method |            |          |
|----------|-----------|-----------------------|------------|----------|
| Year     | Exposures | Counts                | Claims     | Severity |
| 2015     | 11,090    | 1,230                 | 5,348,724  | 4,349    |
| 2016     | 11,250    | 1,270                 | 5,926,222  | 4,666    |
| 2017     | 11,460    | 1,305                 | 6,528,246  | 5,002    |
| 2018     | 11,770    | 1,349                 | 7,227,370  | 5,358    |
| 2019     | 12,070    | 1,381                 | 8,120,976  | 5,881    |
| 2020     | 12,360    | 1,447                 | 9,136,918  | 6,314    |
| 2021     | 12,480    | 1,480                 | 9,678,673  | 6,540    |
| Total    | 82,480    | 9,462                 | 51,967,129 |          |

- The annual claim frequency trend is 1%.
- The annual claim severity trend is 6.5%.
- (a) (*3 points*) Calculate ultimate claims using the development-based frequency-severity method.



Provide the response for this part in the Excel spreadsheet.

Diagnostic testing revealed that this line of business has had strengthening of case estimates in calendar year 2021. You are provided with the following additional information:

| Accident |           |           |           |           |           |           |           |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Year     | 12        | 24        | 36        | 48        | 60        | 72        | 84        |
| 2015     | 1,906,608 | 2,666,402 | 3,459,325 | 4,177,978 | 4,782,824 | 5,202,046 | 5,274,875 |
| 2016     | 2,023,029 | 2,921,757 | 3,795,342 | 4,577,229 | 5,158,981 | 5,763,708 |           |
| 2017     | 2,207,357 | 3,082,180 | 4,057,723 | 4,924,637 | 5,759,272 |           |           |
| 2018     | 2,389,192 | 3,427,092 | 4,397,500 | 5,558,325 |           |           |           |
| 2019     | 2,550,446 | 3,683,042 | 5,107,412 |           |           |           |           |
| 2020     | 2,695,059 | 4,364,690 |           |           |           |           |           |
| 2021     | 3,175,077 |           |           |           |           |           |           |

| Accident | Paid Claims |           |           |           |           |           |           |  |
|----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| Year     | 12          | 24        | 36        | 48        | 60        | 72        | 84        |  |
| 2015     | 734,782     | 1,253,583 | 1,905,611 | 2,640,076 | 3,434,180 | 4,178,154 | 4,637,751 |  |
| 2016     | 767,982     | 1,372,261 | 2,087,061 | 2,927,979 | 3,704,517 | 4,546,408 |           |  |
| 2017     | 799,315     | 1,350,784 | 2,259,191 | 3,126,494 | 4,007,167 |           |           |  |
| 2018     | 899,087     | 1,635,498 | 2,443,217 | 3,379,326 |           |           |           |  |
| 2019     | 968,418     | 1,736,844 | 2,639,562 |           |           |           |           |  |
| 2020     | 1,026,656   | 1,937,498 |           |           |           |           |           |  |
| 2021     | 1,082,487   |           |           |           |           |           |           |  |

| Accident |     |       |       |       |       |       |       |
|----------|-----|-------|-------|-------|-------|-------|-------|
| Year     | 12  | 24    | 36    | 48    | 60    | 72    | 84    |
| 2015     | 732 | 865   | 996   | 1,095 | 1,166 | 1,214 | 1,222 |
| 2016     | 752 | 902   | 1,023 | 1,125 | 1,200 | 1,253 |       |
| 2017     | 780 | 921   | 1,041 | 1,167 | 1,235 |       |       |
| 2018     | 804 | 961   | 1,083 | 1,201 |       |       |       |
| 2019     | 813 | 975   | 1,110 |       |       |       |       |
| 2020     | 835 | 1,024 |       |       |       |       |       |
| 2021     | 875 |       |       |       |       |       |       |



| Accident | Closed Counts |     |     |     |       |       |       |  |  |  |
|----------|---------------|-----|-----|-----|-------|-------|-------|--|--|--|
| Year     | 12            | 24  | 36  | 48  | 60    | 72    | 84    |  |  |  |
| 2015     | 336           | 545 | 730 | 879 | 998   | 1,094 | 1,138 |  |  |  |
| 2016     | 346           | 575 | 747 | 902 | 1,027 | 1,129 |       |  |  |  |
| 2017     | 356           | 575 | 760 | 936 | 1,056 |       |       |  |  |  |
| 2018     | 368           | 611 | 794 | 964 |       |       |       |  |  |  |
| 2019     | 369           | 618 | 807 |     |       |       |       |  |  |  |
| 2020     | 380           | 648 |     |     |       |       |       |  |  |  |
| 2021     | 400           |     |     |     |       |       |       |  |  |  |

(b) (2 points) Construct the reported claims triangle adjusted for the change in case adequacy.

*Provide the response for this part in the Excel spreadsheet.* 

You are provided with the following average ultimate reported severities, adjusted for the change in case adequacy:

| Accident<br>Year | Ultimate Reported<br>Severities |
|------------------|---------------------------------|
| 2015             | 4,316.59                        |
| 2016             | 4,561.67                        |
| 2017             | 4,813.61                        |
| 2018             | 5,066.25                        |
| 2019             | 5,441.62                        |
| 2020             | 5,802.31                        |
| 2021             | 5,990.39                        |

(c) (1.5 points) Recommend the revised annual claim severity trend. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

(d) (*1 point*) Explain why you might expect the answer to part (c) to be lower than the original annual severity trend of 6.5%.

*Provide the response for this part in the Excel spreadsheet.* 

(e) (0.5 points) Calculate ultimate claims using the ultimate counts provided and ultimate reported severities adjusted for the change in case adequacy.



(f) (2 points) Calculate expected claims for all accident years using the expected method and your recommended annual claim severity trend from part (c). Justify any selections.

*Provide the response for this part in the Excel spreadsheet.* 

(g) (1 point) Calculate ultimate claims for all accident years using the Bornhuetter Ferguson method.

*Provide the response for this part in the Excel spreadsheet.* 

You projected ultimate claims using several methods above.

(h) (*1 point*) Recommend the selected ultimate claims for accident year 2021 for this line of business. Justify your recommendation.



## GIRR Fall 2022 Question 7 (LOs 1j, 3c, 3d)

### **Learning Outcomes:**

- (1j) Describe qualitative information required for actuarial work.
- (3c) Identify the types of development triangles that can be used for investigative testing.
- (3d) Analyze development triangles for investigative testing.

## **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 5 and 14.

## Question:

# 7.

| Accident |       | <b>Reported Claim Frequency</b> |       |       |       |       |       |       |  |  |  |
|----------|-------|---------------------------------|-------|-------|-------|-------|-------|-------|--|--|--|
| Year     | 12    | 24                              | 36    | 48    | 60    | 72    | 84    | 96    |  |  |  |
| 2014     | 0.017 | 0.018                           | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 |  |  |  |
| 2015     | 0.018 | 0.019                           | 0.019 | 0.019 | 0.019 | 0.018 | 0.018 |       |  |  |  |
| 2016     | 0.017 | 0.018                           | 0.018 | 0.018 | 0.018 | 0.018 |       |       |  |  |  |
| 2017     | 0.018 | 0.019                           | 0.020 | 0.020 | 0.019 |       |       |       |  |  |  |
| 2018     | 0.015 | 0.016                           | 0.017 | 0.018 |       |       |       |       |  |  |  |
| 2019     | 0.015 | 0.015                           | 0.016 |       |       |       |       |       |  |  |  |
| 2020     | 0.014 | 0.015                           |       |       |       |       |       |       |  |  |  |
| 2021     | 0.013 |                                 |       |       |       |       |       |       |  |  |  |

(4 points) You are given the following information for an investigative analysis:

You noticed that the claim frequency has been decreasing since accident year 2018.

(a) (1 point) Describe two operational changes that could have caused this decrease.

#### ANSWER:

(b) (0.5 points) Describe one external environmental change that could have caused this decrease.



| Accident |       | Ratios of Paid Claims to Reported Claims |       |       |       |       |       |       |
|----------|-------|------------------------------------------|-------|-------|-------|-------|-------|-------|
| Year     | 12    | 24                                       | 36    | 48    | 60    | 72    | 84    | 96    |
| 2014     | 0.205 | 0.363                                    | 0.454 | 0.575 | 0.670 | 0.829 | 0.902 | 0.960 |
| 2015     | 0.187 | 0.357                                    | 0.425 | 0.570 | 0.667 | 0.813 | 0.868 |       |
| 2016     | 0.213 | 0.367                                    | 0.442 | 0.559 | 0.656 | 0.772 |       |       |
| 2017     | 0.198 | 0.359                                    | 0.438 | 0.551 | 0.614 |       |       |       |
| 2018     | 0.196 | 0.373                                    | 0.447 | 0.490 |       |       |       |       |
| 2019     | 0.190 | 0.365                                    | 0.375 |       |       |       |       |       |
| 2020     | 0.203 | 0.295                                    |       |       |       |       |       |       |
| 2021     | 0.150 |                                          |       |       |       |       |       |       |

You are given the following diagnostic triangle for a different line of business:

(c) (0.5 points) Identify a change in pattern in this triangle.

ANSWER:

(d) (*1 point*) Describe two possible operational changes that could have caused the pattern change identified in part (b).

ANSWER:

(e) (*1 point*) Describe an additional test to further investigate the change in pattern identified in part (b).



## GIRR Fall 2022 Question 10 (LOs 3j)

### **Learning Outcomes:**

(3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 22.

## Question:

- **10.** (*4 points*) You are the reserving actuary for a workers' compensation book of business with the following characteristics:
  - Exposures have decreased over the last ten years.
  - Pure premiums have increased in recent years. Rates have not kept up with these increases.
  - The frequency trend is stable.
  - A new claims department manager was hired July 1, 2021. An initiative to strengthen case adjuster claim estimates was implemented by the new manager.

You are estimating ultimate claims by accident year evaluated as of December 31, 2021. You are considering several different methods for projecting ultimate claims for the two most recent accident years.

- (a) (*3 points*) Describe two weaknesses in selecting each of the following methods to estimate ultimate claims for these accident years.
  - (i) Development Method using reported data.
  - (ii) Generalized Cape Cod Method using reported data.

ANSWER:

(b) (*1 point*) Evaluate the appropriateness of selecting the Expected Method using reported pure premium data to estimate ultimate claims for the two most recent accident years.



## GIRR Fall 2022 Question 13 (LOs 3h, 3i)

## **Learning Outcomes:**

- (3h) Explain the effect of changing conditions on the projection methods cited in (3e).
- (3i) Assess the appropriateness of the projection methods cited in (3e) in varying circumstances.

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 21.

## **Question:**

# 13.

(4 points) You are analyzing the reported development triangle for a liability line of business. The business consists of policies from country Alpha and country Beta. The claims development patterns are assumed to be similar for both countries. Claim amounts from country Beta policies are converted from country Beta currency to country Alpha currency. The analysis is on a combined basis from the two countries because there is an insufficient volume of data for stable development factors from country Beta. The reported triangle used in the analysis includes accident years (AYs) 2014 to 2021. Also, the company's financial reporting is entirely in Alpha currency.

The currency exchange rate is generally fixed and adjusted infrequently. The following table shows the currency exchange rates:

| Date                          | Beta Currency<br>(= 1.00 Alpha<br>Currency) |
|-------------------------------|---------------------------------------------|
| Jan. 1, 2013 to Dec. 31, 2018 | 1.02                                        |
| Jan. 1, 2019 to Dec. 31, 2020 | 1.15                                        |
| Jan. 1, 2021 to present       | 1.30                                        |

- Claim payments are converted at the rate in effect when the payment is made.
- Case estimates are converted at the rate in effect at each calendar year-end.
- Premiums are converted at the rate in effect when the policy is written or renewed.

You are given the following additional information:

|                       | Country Alpha | <b>Country Beta</b> |
|-----------------------|---------------|---------------------|
| Policy distribution   | 90%           | 10%                 |
| Expected claims ratio | 65%           | 60%                 |

• The policy distribution is relatively stable over time.



- The claim frequency is similar in both countries.
- The claim frequency trend is zero in both countries.
- Claim severity and severity trend is higher in country Beta than in country Alpha.
- Premium trend is assumed to match claim trend in each country.

You are applying the following projection methods with no special adjustments:

- Development method on reported claims
- Bornhuetter Ferguson method on reported claims with an expected claim ratio of 64.5%
- (a) (1.5 points) Critique each of the two methods used for the analysis. Your critique should indicate any potential bias in the methods.

ANSWER:

(b) (1.5 points) Propose an alternative approach or method for analyzing this data that should produce more accurate results. Justify your proposal.

ANSWER:

(c) (*1 point*) Describe how your responses to parts (a) and (b) would be affected if this were a short-tail line rather than a liability line.



## GIRR Fall 2022 Question 15 (LOs 3d, 3e, 3g)

## **Learning Outcomes:**

- (3d) Analyze development triangles for investigative testing.
- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

## **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 15and 16.

## **Question:**

# 15.

(6 points) You are analyzing ultimate claims for a long-tailed line of business, and are given the following information:

| Accident<br>Year | Earned<br>Exposures |
|------------------|---------------------|
| 2014             | 15,262              |
| 2015             | 15,567              |
| 2016             | 15,878              |
| 2017             | 16,354              |
| 2018             | 16,845              |
| 2019             | 17,687              |
| 2020             | 19,456              |
| 2021             | 24,320              |

| Accident |         | Cumulative Paid Claims |           |           |           |           |           |           |  |  |
|----------|---------|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|
| Year     | 12      | 24                     | 36        | 48        | 60        | 72        | 84        | 96        |  |  |
| 2014     | 311,663 | 795,722                | 1,524,180 | 1,990,256 | 2,519,542 | 2,855,100 | 3,024,598 | 3,150,859 |  |  |
| 2015     | 352,341 | 930,301                | 1,580,111 | 2,104,607 | 2,700,873 | 3,066,239 | 3,334,361 |           |  |  |
| 2016     | 328,658 | 1,005,033              | 1,875,126 | 2,382,118 | 2,941,424 | 3,340,680 |           |           |  |  |
| 2017     | 365,949 | 1,062,531              | 1,891,013 | 2,706,041 | 3,211,463 |           |           |           |  |  |
| 2018     | 484,892 | 1,196,440              | 2,104,325 | 3,005,560 |           |           |           |           |  |  |
| 2019     | 520,095 | 1,227,907              | 2,385,228 |           |           |           |           |           |  |  |
| 2020     | 535,233 | 1,491,676              |           |           |           |           |           |           |  |  |
| 2021     | 766,038 |                        |           |           |           |           |           |           |  |  |



| Accident |       | Paid Claims Age-to-Age Development Factors |       |       |       |       |       |         |  |  |  |
|----------|-------|--------------------------------------------|-------|-------|-------|-------|-------|---------|--|--|--|
| Year     | 12-24 | 24-36                                      | 36-48 | 48-60 | 60-72 | 72-84 | 84-96 | 96-Ult. |  |  |  |
| 2014     | 2.553 | 1.915                                      | 1.306 | 1.266 | 1.133 | 1.059 | 1.042 |         |  |  |  |
| 2015     | 2.640 | 1.698                                      | 1.332 | 1.283 | 1.135 | 1.087 |       |         |  |  |  |
| 2016     | 3.058 | 1.866                                      | 1.270 | 1.235 | 1.136 |       |       |         |  |  |  |
| 2017     | 2.903 | 1.780                                      | 1.431 | 1.187 |       |       |       |         |  |  |  |
| 2018     | 2.467 | 1.759                                      | 1.428 |       |       |       |       |         |  |  |  |
| 2019     | 2.361 | 1.943                                      |       |       |       |       |       |         |  |  |  |
| 2020     | 2.787 |                                            |       |       |       |       |       |         |  |  |  |
| Selected | 2.681 | 1.827                                      | 1.353 | 1.243 | 1.135 | 1.073 | 1.042 | 1.000   |  |  |  |

The selected age-to-age development factors were recommended by your colleague as the simple average of all years.

(a) (0.5 points) Estimate ultimate claims using paid claims and your colleague's selected age-toage factors.

*Provide the response for this part in the Excel spreadsheet.* 

(b) (0.5 points) State two concerns with your colleague's selected age-to-age factors.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (*1 point*) Explain your rationale for each of the concerns identified in part (b).

*Provide the response for this part in the Excel spreadsheet.* 

- (d) (*1 point*) Recommend alternative selected age-to-age factors for the following. Justify your recommendations.
  - (i) 12-24
  - (ii) 36-48



You are given the following additional information, where the selected age-to-age development factors were also recommended by your colleague as the simple average of all years.

| Accident |           | Reported Claims |           |           |           |           |           |           |  |  |  |
|----------|-----------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|
| Year     | 12        | 24              | 36        | 48        | 60        | 72        | 84        | 96        |  |  |  |
| 2014     | 1,088,401 | 1,741,208       | 2,337,117 | 2,631,768 | 2,873,302 | 3,049,220 | 3,131,069 | 3,161,268 |  |  |  |
| 2015     | 1,161,528 | 1,901,037       | 2,526,912 | 2,874,782 | 3,135,434 | 3,337,066 | 3,454,115 |           |  |  |  |
| 2016     | 1,274,210 | 2,056,524       | 2,786,565 | 3,137,931 | 3,421,518 | 3,684,648 |           |           |  |  |  |
| 2017     | 1,351,653 | 2,242,800       | 3,042,803 | 3,409,629 | 3,787,476 |           |           |           |  |  |  |
| 2018     | 1,545,679 | 2,512,220       | 3,394,929 | 3,878,344 |           |           |           |           |  |  |  |
| 2019     | 1,785,869 | 2,834,493       | 3,997,935 |           |           |           |           |           |  |  |  |
| 2020     | 2,050,810 | 3,596,409       |           |           |           |           |           |           |  |  |  |
| 2021     | 3,028,985 |                 |           |           |           |           |           |           |  |  |  |

| Accident |       | Reported Claims Age-to-Age Development Factors |       |       |       |       |       |         |  |  |
|----------|-------|------------------------------------------------|-------|-------|-------|-------|-------|---------|--|--|
| Year     | 12-24 | 24-36                                          | 36-48 | 48-60 | 60-72 | 72-84 | 84-96 | 96-Ult. |  |  |
| 2014     | 1.600 | 1.342                                          | 1.126 | 1.092 | 1.061 | 1.027 | 1.010 |         |  |  |
| 2015     | 1.637 | 1.329                                          | 1.138 | 1.091 | 1.064 | 1.035 |       |         |  |  |
| 2016     | 1.614 | 1.355                                          | 1.126 | 1.090 | 1.077 |       |       |         |  |  |
| 2017     | 1.659 | 1.357                                          | 1.121 | 1.111 |       |       |       |         |  |  |
| 2018     | 1.625 | 1.351                                          | 1.142 |       |       |       |       |         |  |  |
| 2019     | 1.587 | 1.410                                          |       |       |       |       |       |         |  |  |
| 2020     | 1.754 |                                                |       |       |       |       |       |         |  |  |
| Selected | 1.639 | 1.357                                          | 1.131 | 1.096 | 1.067 | 1.031 | 1.010 | 1.010   |  |  |

(e) (0.5 points) Estimate ultimate claims using reported claims and your colleague's selected age-to-age factors.

*Provide the response for this part in the Excel spreadsheet.* 

(f) (*1 point*) Provide two reasons why the ultimate claims from part (e) are higher than the ultimate claims from part (a).

*Provide the response for this part in the Excel spreadsheet.* 

Your colleague has noted that the latest diagonal of the reported age-to-age development factors triangle has increased significantly and has concluded that there has been an increase in the rate of claim settlement.

(g) (1.5 points) Evaluate your colleague's conclusion.



## GIRR Fall 2022 Question 17 (LOs 3e, 3f, 3g, 3j)

## **Learning Outcomes:**

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).
- (3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).

## **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 15, 19, and 22.

## **Question:**

# 17.

(7 points)

(a) (0.5 points) Provide two reasons an actuary may want to estimate ultimate ALAE separate from ultimate indemnity.

*Provide the response for this part in the Excel spreadsheet.* 

You are asked to project ultimate ALAE evaluated as of December 31, 2021 using the Cape Cod method. You are given the following information:

| Accident<br>Year | Earned<br>Exposures | Reported ALAE<br>as of Dec. 31, 2021 | Reported ALAE Cumulative<br>Development Factors |
|------------------|---------------------|--------------------------------------|-------------------------------------------------|
| 2014             | 24,282              | 3,617                                | 1.000                                           |
| 2015             | 25,414              | 4,159                                | 1.011                                           |
| 2016             | 26,264              | 2,256                                | 1.053                                           |
| 2017             | 26,950              | 2,410                                | 1.114                                           |
| 2018             | 28,044              | 2,051                                | 1.234                                           |
| 2019             | 29,110              | 2,672                                | 1.411                                           |
| 2020             | 29,880              | 4,900                                | 1.922                                           |
| 2021             | 30,606              | 2,699                                | 3.574                                           |
| Total            | 220,550             | 24,764                               |                                                 |

• The annual frequency trend is -1.5%.



- The annual severity trend is 4.0%.
- Tort reform resulted in an estimated claim decrease of 10% for all claims occurring on or after July 1, 2019.
- (b) (2.5 points) Calculate the adjusted expected pure premium for ALAE (i.e., ALAE cost per exposure) by accident year and in total using the Cape Cod method.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (0.5 points) Comment on whether or not the results from part (b) are consistent with the key assumption of the Cape Cod method.

*Provide the response for this part in the Excel spreadsheet.* 

(d) (1.5 points) Calculate the projected ultimate ALAE by accident year using the Cape Cod method.

Provide the response for this part in the Excel spreadsheet.

(e) (*1 point*) Compare actual ALAE as of December 31, 2021 to expected ALAE from the Cape Cod method.

*Provide the response for this part in the Excel spreadsheet.* 

(f) (0.5 points) Assess the actual versus expected results from part (e).

*Provide the response for this part in the Excel spreadsheet.* 

(g) (0.5 points) Describe a scenario where an actuary would likely choose to apply the Generalized Cape Cod method over the Cape Cod method.



## GIRR Spring 2023 Question 3 (LOs 3e, 3g)

#### **Learning Outcomes:**

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 15.

## **Question:**

## 3.

(5 points) You are estimating ultimate claims as of December 31, 2022 for reserving purposes.

(a) (0.5 points) State the two key assumptions of the development method.

ANSWER:

(b) (0.5 points) Describe an advantage of using paid claims instead of reported claims when applying the development method.

ANSWER:

(c) (0.5 points) Describe an advantage of using reported claims instead of paid claims when applying the development method.

ANSWER:

(d) (0.5 points) Describe one way you might account for the presence of large claims in the data when applying the development method.



(e) (*1 point*) Describe two ways you might account for limited credibility of the data when applying the development method.

ANSWER:

You are given the following:

| Accident |         | Cumulative Paid Claims |           |           |           |           |           |  |
|----------|---------|------------------------|-----------|-----------|-----------|-----------|-----------|--|
| Year     | 12      | 24                     | 36        | 48        | 60        | 72        | 84        |  |
| 2016     | 380,408 | 889,802                | 1,317,812 | 1,721,331 | 2,096,297 | 2,375,430 | 2,487,315 |  |
| 2017     | 450,310 | 869,371                | 1,402,540 | 1,868,637 | 2,216,571 | 2,507,208 |           |  |
| 2018     | 348,866 | 965,278                | 1,457,682 | 1,919,642 | 2,328,436 |           |           |  |
| 2019     | 367,455 | 1,019,276              | 1,546,088 | 2,091,115 |           |           |           |  |
| 2020     | 455,227 | 1,033,085              | 1,650,625 |           |           |           |           |  |
| 2021     | 516,038 | 1,140,537              |           |           |           |           |           |  |
| 2022     | 408,139 |                        |           |           |           |           |           |  |

| Accident | Projected Ultimate Claims<br>from Reported |
|----------|--------------------------------------------|
| Year     | Development Method                         |
| 2016     | 2,513,084                                  |
| 2017     | 2,665,698                                  |
| 2018     | 2,809,772                                  |
| 2019     | 3,033,731                                  |
| 2020     | 3,200,828                                  |
| 2021     | 3,372,842                                  |
| 2022     | 3,500,773                                  |

(f) (2 points) Calculate projected ultimate claims for all accident years using the paid development method.

*Provide the response for this part in the Excel spreadsheet.* 



## GIRR Spring 2023 Question 6 (LOs 3e, 3g)

#### Learning Outcomes:

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 19.

### **Question:**

# **6**.

(5 points) You are estimating ultimate claims as of December 31, 2022 using the Cape Cod method.

(a) (0.5 points) Describe why the Cape Cod method may not be appropriate for coverages such as property or automobile collision.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following for a liability line of business:

| Accident<br>Year | On-Level<br>Earned<br>Premiums | Paid<br>Claims | Paid Cumulative<br>Development<br>Factors |
|------------------|--------------------------------|----------------|-------------------------------------------|
| 2017             | 14,304,922                     | 8,573,426      | 1.048                                     |
| 2018             | 14,662,414                     | 8,699,818      | 1.097                                     |
| 2019             | 14,826,526                     | 7,732,920      | 1.326                                     |
| 2020             | 15,064,165                     | 5,857,706      | 1.847                                     |
| 2021             | 15,448,284                     | 3,561,183      | 3.146                                     |
| 2022             | 15,630,481                     | 1,395,852      | 9.473                                     |

- The annual claim trend is 5.0%.
- Tort reform reduced claim costs by 20% for all accidents occurring on or after April 1, 2020.



(b) (3.5 points) Calculate projected ultimate claims using the Cape Cod method applied to paid claims.

*Provide the response for this part in the Excel spreadsheet.* 

Projected ultimate claims using the Cape Cod method applied to *reported* claims are significantly less than those calculated in part (b).

(c) (*1 point*) Describe two situations that could result in such a difference in Cape Cod projections.

Provide the response for this part in the Excel spreadsheet.



## GIRR Spring 2023 Question 7 (LOs 3i, 3j)

#### **Learning Outcomes:**

- (3i) Assess the appropriateness of the projection methods cited in (3e) in varying circumstances.
- (3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 21.

#### **Question:**

# 7.

(4 points) You are considering various methods to estimate claim liabilities for accident year 2022 as of December 31, 2022.

Recommend a <u>different</u> estimation method to use with <u>each</u> of the following four independent books of business. Justify your recommendations.

- (i) A long-tailed book where the case estimates were strengthened in 2018.
- (ii) A book that has unstable development patterns and experience that has been improving.
- (iii) A quickly growing book of business that has only been writing business for three years.
- (iv) A medium-tailed book of business where the policy limit was increased from 2 million to 3 million, effective January 1, 2019.

ANSWER:



## GIRR Spring 2023 Question 11 (LOs 3e, 3g)

#### **Learning Outcomes:**

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 20.

#### **Question:**

## 11.

(4 points) You are estimating ultimate claims for a line of business as of December 31, 2022 and are given the following:

| Accident |     | <b>Closed Counts</b> |       |       |       |       |        |  |
|----------|-----|----------------------|-------|-------|-------|-------|--------|--|
| Year     | 12  | 24                   | 36    | 48    | 60    | 72    | Counts |  |
| 2017     | 399 | 730                  | 1,007 | 1,215 | 1,359 | 1,365 | 1,371  |  |
| 2018     | 417 | 763                  | 1,063 | 1,278 | 1,318 |       | 1,330  |  |
| 2019     | 449 | 811                  | 1,084 | 1,213 |       |       | 1,315  |  |
| 2020     | 459 | 836                  | 1,077 |       |       |       | 1,373  |  |
| 2021     | 498 | 826                  |       |       |       |       | 1,421  |  |
| 2022     | 459 |                      |       |       |       |       | 1,413  |  |

• Ultimate counts were based on the development method.

- The annual claim severity trend is 5.0%.
- The annual claim frequency trend is 0.2%.

The claims department manager has advised you that there is currently a delay in claims processing.

(a) (0.5 points) Identify two possible reasons for a delay in claims processing.

*Provide the response for this part in the Excel spreadsheet.* 

(b) (1 point) Calculate the disposal ratio triangle for this line of business.

Version 2025-1



*Provide the response for this part in the Excel spreadsheet.* 

(c) (0.5 points) Interpret the results from part (b).

*Provide the response for this part in the Excel spreadsheet.* 

You have decided to use a Berquist-Sherman approach to adjust for changing settlement rates. The average paid claim varies only by accident year trend. You are given the following:

| Ave   | Average Paid Claim for Calendar Year 2022 |       |       |       |       |  |  |  |
|-------|-------------------------------------------|-------|-------|-------|-------|--|--|--|
| 12    | 12 24 36 48 60 72                         |       |       |       |       |  |  |  |
| 4,400 | 5,400                                     | 5,785 | 5,982 | 6,000 | 6,125 |  |  |  |

(d) (2 points) Calculate the adjusted paid claims triangle.

*Provide the response for this part in the Excel spreadsheet.* 



## GIRR Spring 2023 Question 13 (LOs 3c, 3d)

#### **Learning Outcomes:**

- (3c) Identify the types of development triangles that can be used for investigative testing.
- (3d) Analyze development triangles for investigative testing.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 14.

## **Question:**

# 13.

(5 *points*) You are estimating ultimate claims for a medium-tailed line of business evaluated as of December 31, 2022. Your reserving software produces the following preliminary estimates based on a simple application of the development method:

| Accident | Reported Claims |           |            |            |            |            | Ultimate   |
|----------|-----------------|-----------|------------|------------|------------|------------|------------|
| Year     | 12              | 24        | 36         | 48         | 60         | 72         | Claims     |
| 2017     | 4,490,119       | 6,618,441 | 8,018,024  | 9,424,347  | 9,996,330  | 10,121,653 | 10,248,547 |
| 2018     | 4,892,866       | 6,982,903 | 8,630,338  | 10,114,249 | 10,671,269 |            | 10,940,516 |
| 2019     | 5,116,047       | 7,389,572 | 9,267,893  | 10,572,454 |            |            | 11,466,607 |
| 2020     | 5,687,200       | 8,006,857 | 10,230,447 |            |            |            | 12,900,933 |
| 2021     | 6,277,173       | 9,059,236 |            |            |            |            | 14,220,841 |
| 2022     | 6,920,495       |           |            |            |            |            | 15,636,155 |

| Accident | Paid Claims |           |           |            |            |            |            |
|----------|-------------|-----------|-----------|------------|------------|------------|------------|
| Year     | 12          | 24        | 36        | 48         | 60         | 72         | Claims     |
| 2017     | 1,950,824   | 4,523,911 | 6,506,781 | 8,594,540  | 9,886,911  | 10,121,653 | 10,361,968 |
| 2018     | 2,077,925   | 4,668,120 | 7,007,477 | 9,239,820  | 10,671,269 |            | 11,184,014 |
| 2019     | 2,061,272   | 4,882,698 | 7,493,669 | 10,572,454 |            |            | 12,771,843 |
| 2020     | 2,431,961   | 5,348,691 | 8,813,923 |            |            |            | 14,375,085 |
| 2021     | 2,726,683   | 6,334,322 |           |            |            |            | 15,811,681 |
| 2022     | 2,996,405   |           |           |            |            |            | 17,138,313 |



| Accident |       | Reported Counts |       |       |       |       |        |  |
|----------|-------|-----------------|-------|-------|-------|-------|--------|--|
| Year     | 12    | 24              | 36    | 48    | 60    | 72    | Counts |  |
| 2017     | 1,193 | 1,488           | 1,670 | 1,850 | 1,921 | 1,935 | 1,949  |  |
| 2018     | 1,204 | 1,523           | 1,701 | 1,864 | 1,941 |       | 1,969  |  |
| 2019     | 1,229 | 1,515           | 1,738 | 1,874 |       |       | 1,977  |  |
| 2020     | 1,236 | 1,554           | 1,753 |       |       |       | 2,023  |  |
| 2021     | 1,278 | 1,576           |       |       |       |       | 2,053  |  |
| 2022     | 1,273 |                 |       |       |       |       | 2,068  |  |

| Accident |     | Closed Counts |       |       |       |       |        |  |
|----------|-----|---------------|-------|-------|-------|-------|--------|--|
| Year     | 12  | 24            | 36    | 48    | 60    | 72    | Counts |  |
| 2017     | 616 | 1,070         | 1,401 | 1,715 | 1,910 | 1,935 | 1,960  |  |
| 2018     | 614 | 1,096         | 1,427 | 1,729 | 1,941 |       | 1,992  |  |
| 2019     | 623 | 1,086         | 1,463 | 1,874 |       |       | 2,151  |  |
| 2020     | 627 | 1,117         | 1,566 |       |       |       | 2,227  |  |
| 2021     | 648 | 1,211         |       |       |       |       | 2,307  |  |
| 2022     | 696 |               |       |       |       |       | 2,365  |  |

The annual claim severity trend for this line of business is 6.2%.

As part of your claims analysis, you are conducting various investigative tests for evaluating potential changes in case reserve adequacy and/or claim settlement patterns.

(a) (2.5 points) Analyze this data for evidence of a change in case reserve adequacy, using two different investigative tests. Justify your conclusion.

*Provide the response for this part in the Excel spreadsheet.* 

Your colleague reviewed the triangle of reported claim ratios for this line of business. The most recent diagonal showed a significant increase and your colleague concluded that this is clear evidence of an increase in case outstanding adequacy.

(b) (0.5 points) Critique your colleague's conclusion.

*Provide the response for this part in the Excel spreadsheet.* 

The ratios of paid to reported claims is one investigative test used to determine if there is evidence of a change in claim settlement patterns.

(c) (0.5 points) Describe why an increase in the most recent diagonal of the ratios of paid to reported claims triangle may not give a clear indication of such a change.

Provide the response for this part in the Excel spreadsheet.



(d) (1.5 points) Analyze this data for evidence of a change in claim settlement patterns, using an investigative test other than the test described in part (c). Justify your conclusion.

Provide the response for this part in the Excel spreadsheet.



## GIRR Spring 2023 Question 14 (LOs 3g, 5c, 5d)

#### **Learning Outcomes:**

- (3g) Estimate ultimate values using the methods cited in (3e).
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 16 and 26.

## Question:

# 14.

(6 points) You are estimating ultimate claims as of December 31, 2022 using the developmentbased frequency-severity method. You are given the following:

| Accident<br>Year | Earned<br>Exposures | Ultimate Counts<br>Based on<br>Development Method | Ultimate Severity<br>Based on<br>Development Method |
|------------------|---------------------|---------------------------------------------------|-----------------------------------------------------|
| 2017             | 11,434              | 1,235                                             | 4,104                                               |
| 2018             | 11,635              | 1,247                                             | 4,384                                               |
| 2019             | 11,681              | 1,249                                             | 4,751                                               |
| 2020             | 11,821              | 1,260                                             | 5,066                                               |
| 2021             | 12,044              | 1,256                                             | 5,531                                               |
| 2022             | 12,240              | 1,301                                             | 5,897                                               |

- The annual claim severity trend is 7.5%.
- The earned exposures are not inflation sensitive.
- (a) (1.5 points) Recommend an annual claim frequency trend to use for the development-based frequency-severity method. Justify your recommendation.

Provide the response for this part in the Excel spreadsheet.

(b) (3.5 points) Estimate ultimate claims for all accident years using the development-based frequency-severity method.

Provide the response for this part in the Excel spreadsheet.

Version 2025-1



There are times when projections from the frequency-severity method are preferred over the development method when used as inputs to the expected method.

(c) (*1 point*) Describe two scenarios when projections from the frequency-severity method are preferred.

*Provide the response for this part in the Excel spreadsheet.* 



## GIRR Fall 2023 Question 1 (LOs 1d, 2a, 3d)

#### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (2a) Create development triangles of claims and counts from detailed claim transaction data.
- (3d) Analyze development triangles for investigative testing.

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 11, and 14.

#### **Question:**

# 1.

(6 points) An insurer began writing policies in 2019. You are given the following:

| Accident |       | Reported Claims (000) |       |       |  |  |  |
|----------|-------|-----------------------|-------|-------|--|--|--|
| Year     | 12    | 24                    | 36    | 48    |  |  |  |
| 2019     | 1,148 | 1,783                 | 2,526 | 3,410 |  |  |  |
| 2020     | 3,427 | 4,893                 | 6,847 |       |  |  |  |
| 2021     | 5,710 | 12,170                |       |       |  |  |  |
| 2022     | 8,035 |                       |       |       |  |  |  |

| Accident |       | Paid Claims (000) |       |       |  |  |  |
|----------|-------|-------------------|-------|-------|--|--|--|
| Year     | 12    | 24                | 36    | 48    |  |  |  |
| 2019     | 138   | 466               | 882   | 1,425 |  |  |  |
| 2020     | 413   | 1,269             | 3,148 |       |  |  |  |
| 2021     | 689   | 4,140             |       |       |  |  |  |
| 2022     | 1,286 |                   |       |       |  |  |  |

It was subsequently discovered that the following claims and their transactions were not captured in the triangles.

| Claim | Occurrence    |
|-------|---------------|
| ID    | Date          |
| 100   | Oct. 11, 2019 |
| 200   | Jan. 5, 2020  |
| 300   | Feb. 28, 2021 |



| Trans<br># | Claim<br>ID | Transaction<br>Date | Transaction Description           | Change in Case<br>Estimate (000) | Payment<br>(000) |
|------------|-------------|---------------------|-----------------------------------|----------------------------------|------------------|
| 1          | 200         | Feb. 7, 2020        | Open new claim file               | 17                               |                  |
| 2          | 100         | May 12, 2020        | Open new claim file               | 5                                |                  |
| 3          | 300         | Mar. 8, 2021        | Open new claim file               | 29                               |                  |
| 4          | 100         | Jul. 22, 2021       | Payment & change in case estimate | -5                               | 6                |
| 5          | 200         | Nov. 13, 2021       | Payment & change in case estimate | -13                              | 6                |
| 6          | 300         | Jun. 4, 2022        | Payment                           |                                  | 11               |

- (a) (*3 points*) Update both triangles to include the missing transactions.
- (b) (*1 point*) Identify an anomaly in the triangle of ratios of paid claims to reported claims based on the corrected triangles from part (a).
- (c) (*1 point*) Describe two operational changes that could have caused the anomaly you identified in part (b).

You are given the following carried IBNR reserves:

| IBNR Reserves (000) |        |  |  |  |  |
|---------------------|--------|--|--|--|--|
| Dec 31, 2019        | 4,591  |  |  |  |  |
| Dec 31, 2020        | 17,722 |  |  |  |  |
| Dec 31, 2021        | 38,476 |  |  |  |  |
| Dec 31, 2022        | 61,299 |  |  |  |  |

(d) (*1 point*) Calculate incurred claims for calendar year 2021.



## GIRR Fall 2023 Question 2 (LOs 3j)

#### **Learning Outcomes:**

(3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 22.

## **Question:**

2. (5 *points*) You are given the following estimates of ultimate claims as of December 31, 2022 using various projection methods for paid and reported datasets for ABC Insurance:

|                       |                | Estimated Ultimate Claims Derived from Paid Claims |                                  |                    |                                   |  |  |  |
|-----------------------|----------------|----------------------------------------------------|----------------------------------|--------------------|-----------------------------------|--|--|--|
| Accident<br>Year (AY) | Paid<br>Claims | Development<br>Method                              | Frequency-<br>Severity<br>Method | Expected<br>Method | Bornhuetter<br>Ferguson<br>Method |  |  |  |
| 2016                  | 4,061,301      | 4,213,797                                          | 3,713,314                        | 3,621,490          | 4,192,361                         |  |  |  |
| 2017                  | 3,886,797      | 4,184,164                                          | 3,962,745                        | 3,785,648          | 4,155,841                         |  |  |  |
| 2018                  | 3,473,991      | 4,362,003                                          | 4,194,937                        | 4,031,681          | 4,294,757                         |  |  |  |
| 2019                  | 2,634,801      | 4,567,645                                          | 4,428,939                        | 4,369,286          | 4,483,708                         |  |  |  |
| 2020                  | 1,668,537      | 4,583,998                                          | 4,706,684                        | 4,614,726          | 4,603,541                         |  |  |  |
| 2021                  | 841,930        | 4,747,208                                          | 5,046,721                        | 4,938,526          | 4,904,595                         |  |  |  |
| 2022                  | 234,974        | 4,861,561                                          | 5,600,346                        | 5,553,008          | 5,519,588                         |  |  |  |
| Total                 | 16,802,331     | 31,520,376                                         | 31,653,686                       | 30,914,365         | 32,154,391                        |  |  |  |

|                       |                    | Estimated Ultimate Claims Derived from Reported Claims |                                  |                    |                                   |  |  |  |
|-----------------------|--------------------|--------------------------------------------------------|----------------------------------|--------------------|-----------------------------------|--|--|--|
| Accident<br>Year (AY) | Reported<br>Claims | Development<br>Method                                  | Frequency-<br>Severity<br>Method | Expected<br>Method | Bornhuetter<br>Ferguson<br>Method |  |  |  |
| 2016                  | 4,286,393          | 4,408,940                                              | 4,521,400                        | 4,507,837          | 4,411,689                         |  |  |  |
| 2017                  | 4,481,291          | 4,741,193                                              | 4,824,445                        | 4,712,173          | 4,739,602                         |  |  |  |
| 2018                  | 4,206,123          | 5,012,214                                              | 5,107,961                        | 5,018,421          | 5,013,213                         |  |  |  |
| 2019                  | 3,595,110          | 5,437,466                                              | 5,396,261                        | 5,438,653          | 5,437,869                         |  |  |  |
| 2020                  | 2,701,167          | 5,733,690                                              | 5,731,620                        | 5,744,164          | 5,739,229                         |  |  |  |
| 2021                  | 1,772,745          | 6,159,764                                              | 6,145,839                        | 6,147,213          | 6,150,825                         |  |  |  |
| 2022                  | 944,060            | 6,654,576                                              | 6,820,458                        | 6,912,087          | 6,875,555                         |  |  |  |
| Total                 | 21,986,889         | 38,147,843                                             | 38,547,984                       | 38,480,548         | 38,367,982                        |  |  |  |

Version 2025-1



- The data used in estimating ultimate claims has not been adjusted for any changing conditions in the book of business.
- Investigative testing indicates that the change in average case outstanding has increased and the change is consistent with claim trend over the historical period.
- Investigative testing also indicates that the claim settlement rate has decreased significantly in the most recent calendar year.
- (a) (*3 points*) Evaluate the reasonableness of each of the following methods and datasets for estimating ABC Insurance's ultimate claims:
  - (i) Expected method based on paid claims for AY 2017
  - (ii) Bornhuetter Ferguson method based on paid claims for AY 2020
  - (iii) Reported development method for AY 2022

ANSWER:

(b) (*1 point*) Recommend ultimate claims from a method and dataset for AY 2021. Justify your recommendation.

ANSWER:

You have adjusted the data to account for any changing conditions and recalculated the ultimate claims estimates.

(c) (*1 point*) Evaluate the reasonableness of the AY 2021 ultimate claims estimate using the paid development method after adjustment.

ANSWER:



## GIRR Fall 2023 Question 5 (LOs 3g)

#### **Learning Outcomes:**

(3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 19.

#### **Question:**

## 5.

Provide the response for this question in the Excel spreadsheet.

(*4 points*) You are estimating IBNR as of December 31, 2022, using the Cape Cod method. You are given the following:

| Accident<br>Year | On-Level<br>Earned<br>Premiums | Reported<br>Claims | Reported<br>Cumulative<br>Development<br>Factors |
|------------------|--------------------------------|--------------------|--------------------------------------------------|
| 2019             | 15,700                         | 8,200              | 1.10                                             |
| 2020             | 15,200                         | 6,200              | 1.50                                             |
| 2021             | 15,800                         | 3,500              | 2.20                                             |
| 2022             | 16,300                         | 1,500              | 4.00                                             |

• The annual claim trend is 3%.

- A recent court decision has resulted in an estimated claim increase of 10% for all accidents on occurring or after January 1, 2021.
- (a) (3.5 points) Calculate the IBNR for all accident years using the Cape Cod method.
- (b) (0.5 points) Calculate the accident year 2021 IBNR using the Generalized Cape Cod method and a decay factor of 0%.



## GIRR Fall 2023 Question 7 (LOs 3h, 3i)

#### **Learning Outcomes:**

- (3h) Explain the effect of changing conditions on the projection methods cited in (3e).
- (3i) Assess the appropriateness of the projection methods cited in (3e) in varying circumstances.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 21.

#### **Question:**

## 7.

(4 points) You are estimating unpaid claims for lines of business where conditions have been changing.

(a) (*1 point*) Explain whether the Bornhuetter Ferguson method or Cape Cod method is more responsive to a deterioration in claims experience.

ANSWER:

A recent court decision has resulted in increased claim payments on private passenger automobile policies effective July 1, 2020.

- (b) (*1 point*) Describe how this change affects the reported claims development triangle evaluated as of December 31, 2022, assuming the following:
  - (i) The court decision affects only new claims.
  - (ii) The court decision affects new and open claims.

ANSWER:

(i)

(ii)



(c) (*1 point*) Describe why the Cape Cod method could be appropriate when estimating claims under scenario (b)(i) above.

ANSWER:

(d) (*1 point*) Describe why a Berquist-Sherman data adjustment could be appropriate when estimating claims under scenario (b)(ii) above.

ANSWER:



## GIRR Fall 2023 Question 8 (LOs 3g, 5c, 5d, 5e)

#### **Learning Outcomes:**

- (3g) Estimate ultimate values using the methods cited in (3e).
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 16 and 26.

## Question:

# 8.

Provide the response for this question in the Excel spreadsheet.

(4 points) The two most common models for determining trend rates are linear and exponential.

(a) (0.5 points) Explain why a linear trend model may not be appropriate when trend is decreasing.

You are given the following:

| Accident<br>Year |        |       | Indicated Claim<br>Frequency |
|------------------|--------|-------|------------------------------|
| 2016             | 15,859 | 1,454 | 9.17%                        |
| 2017             | 16,140 | 1,452 | 9.00%                        |
| 2018             | 16,265 | 1,457 | 8.96%                        |
| 2019             | 16,319 | 1,453 | 8.90%                        |
| 2020             | 16,536 | 1,442 | 8.72%                        |
| 2021             | 16,928 | 1,464 | 8.65%                        |
| 2022             | 16,842 | 1,475 | 8.76%                        |

| Indicated annual trend, using an exponential model |        |  |  |  |
|----------------------------------------------------|--------|--|--|--|
| All years                                          | -0.86% |  |  |  |
| AY2017-AY2022                                      | -0.74% |  |  |  |
| AY2016-AY2021                                      | -1.11% |  |  |  |



(b) (0.5 points) Recommend an annual claim frequency trend to use for this line of business. Justify your recommendation.

You are also given the following:

| Accident<br>Year | Ultimate<br>Severity |
|------------------|----------------------|
| 2016             | 3,750                |
| 2017             | 3,993                |
| 2018             | 4,230                |
| 2019             | 4,489                |
| 2020             | 4,679                |
| 2021             | 5,048                |
| 2022             | 5,409                |

- The annual severity trend is 6.0%.
- Ultimate counts and ultimate severity were determined based on the development method.
- (c) (*3 points*) Calculate projected ultimate claims using the development-based frequencyseverity method and your recommended annual claim frequency trend.



## GIRR Fall 2023 Question 10 (LOs 3e, 3g)

#### Learning Outcomes:

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 17 and 18.

### Question:

## 10.

Provide the response for this question in the Excel spreadsheet.

(5 points) You are estimating ultimate claims.

- (a) (0.5 points) Describe two situations where the expected method is most often used when estimating ultimate claims.
- (b) (0.5 points) Describe the primary assumption of the expected method.

You are given the following as of December 31, 2022.

| Accident<br>Year | Reported Claims (000) |        |        | Projected Ultimate<br>Claims (000) Based on |        |                    |
|------------------|-----------------------|--------|--------|---------------------------------------------|--------|--------------------|
| (AY)             | 12                    | 24     | 36     | 48                                          | 60     | Development Method |
| 2018             | 6,750                 | 8,295  | 9,780  | 10,670                                      | 10,990 | 11,753             |
| 2019             | 7,375                 | 9,268  | 10,843 | 11,808                                      |        | 13,006             |
| 2020             | 8,000                 | 10,240 | 12,083 |                                             |        | 14,507             |
| 2021             | 8,625                 | 11,213 |        |                                             |        | 15,836             |
| 2022             | 9,250                 |        |        |                                             |        | 16,544             |



| Calendar<br>Year | r r r  |     | Premium On<br>Level Factors |
|------------------|--------|-----|-----------------------------|
| 2018             | 14,750 | 195 | 1.103                       |
| 2019             | 15,895 | 205 | 1.098                       |
| 2020             | 17,400 | 225 | 1.060                       |
| 2021             | 18,705 | 235 | 1.034                       |
| 2022             | 20,010 | 236 | 1.000                       |

The annual trend rate for claim ratios and pure premiums is 3%.

- (c) (1.5 points) Calculate the expected claim ratios for each year at the 2022 cost level using reported claims.
- (d) (0.5 points) Calculate the pure premiums for each year at the 2022 cost level using reported claims.
- (e) (2 points) Calculate the accident year 2021 ultimate claims using the Bornhuetter Ferguson method and:
  - (i) A selected expected claim ratio of 82% at the 2022 cost level
  - (ii) A selected pure premium of 69 at the 2022 cost level



## GIRR Fall 2023 Question 13 (LOs 3e, 3f, 3g)

#### **Learning Outcomes:**

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 15.

## **Question:**

# 13.

Provide the response for this question in the Excel spreadsheet.

(4 points) You are given the following:

| Accident | Reported Claims (000) |       |       |       |       |       |       |  |
|----------|-----------------------|-------|-------|-------|-------|-------|-------|--|
| Year     | 12                    | 24    | 36    | 48    | 60    | 72    | 84    |  |
| 2016     | 1,826                 | 2,742 | 2,948 | 3,174 | 3,239 | 3,248 | 3,248 |  |
| 2017     | 2,296                 | 3,656 | 3,928 | 4,230 | 4,458 | 4,506 |       |  |
| 2018     | 3,064                 | 4,932 | 5,465 | 6,104 | 6,373 |       |       |  |
| 2019     | 2,327                 | 3,675 | 4,522 | 5,124 |       |       |       |  |
| 2020     | 2,691                 | 4,495 | 4,924 |       |       |       |       |  |
| 2021     | 2,497                 | 5,025 |       |       |       |       |       |  |
| 2022     | 3,740                 |       |       |       |       |       |       |  |

| Accident            | Age-to-Age Factors |       |       |       |       |       |  |
|---------------------|--------------------|-------|-------|-------|-------|-------|--|
| Year                | 12-24              | 24-36 | 36-48 | 48-60 | 60-72 | 72-84 |  |
| Volume-weighted     |                    |       |       |       |       |       |  |
| average (all years) | 1.668              | 1.117 | 1.105 | 1.042 | 1.007 | 1.000 |  |

- There is no development beyond 84 months.
- The reported claims history includes two large claims.
- Large claim #1 occurred on July 1, 2019 and was reported on January 20, 2021. The initial case estimate was 500,000.



- Large claim #2 occurred on September 10, 2021 and was reported on March 2, 2022. The initial case estimate was 1.0 million.
- These large claims have not had any payments made or adjustments to case estimates as of December 31, 2022.

Your colleague recommends using the volume-weighted average of all years for age-to-age development factors.

- (a) (0.5 points) Identify a potential problem with your colleague's recommendation.
- (b) (0.5 points) Describe an alternative approach to your colleague's recommendation.
- (c) (2.5 points) Estimate total ultimate claims based on the development method and your alternative from part (b).
- (d) (0.5 points) Describe how you would adjust for the large claims when estimating ultimate claims based on the paid development method for this line of business.



## GIRR Fall 2023 Question 14 (LOs 3c, 3d)

#### **Learning Outcomes:**

- (3c) Identify the types of development triangles that can be used for investigative testing.
- (3d) Analyze development triangles for investigative testing.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 14 and 20.

## Question:

# 14.

Provide the response for this question in the Excel spreadsheet.

(5 points) You are analyzing a triangle of average reported claims. There are several actions that could result in shifts in reported claim patterns. One example is a new approach to setting case estimate amounts.

(a) (*1 point*) Identify two other examples of actions that could result in shifts in a reported claim pattern.

You are given the following:

| Accident |           | Reported Claims |           |           |           |           |  |  |  |  |  |  |
|----------|-----------|-----------------|-----------|-----------|-----------|-----------|--|--|--|--|--|--|
| Year     | 12        | 24              | 36        | <b>48</b> | 60        | 72        |  |  |  |  |  |  |
| 2017     | 3,258,495 | 4,632,313       | 5,665,417 | 6,660,535 | 7,372,368 | 7,702,277 |  |  |  |  |  |  |
| 2018     | 3,556,049 | 4,925,302       | 6,252,176 | 7,431,788 | 8,060,259 |           |  |  |  |  |  |  |
| 2019     | 3,798,926 | 5,378,090       | 6,921,131 | 8,051,684 |           |           |  |  |  |  |  |  |
| 2020     | 4,174,496 | 6,013,059       | 7,664,425 |           |           |           |  |  |  |  |  |  |
| 2021     | 4,854,244 | 6,611,842       |           |           |           |           |  |  |  |  |  |  |
| 2022     | 5,320,155 |                 |           |           |           |           |  |  |  |  |  |  |



| Accident |           | Paid Claims |           |           |           |           |  |  |  |  |  |
|----------|-----------|-------------|-----------|-----------|-----------|-----------|--|--|--|--|--|
| Year     | 12        | 24          | 36        | 48        | 60        | 72        |  |  |  |  |  |
| 2017     | 1,227,967 | 2,870,190   | 4,218,215 | 5,649,515 | 6,801,540 | 7,532,219 |  |  |  |  |  |
| 2018     | 1,254,169 | 2,975,612   | 4,720,518 | 6,197,891 | 7,435,993 |           |  |  |  |  |  |
| 2019     | 1,406,648 | 3,267,932   | 5,029,042 | 6,714,834 |           |           |  |  |  |  |  |
| 2020     | 1,575,637 | 3,453,821   | 5,616,379 |           |           |           |  |  |  |  |  |
| 2021     | 1,667,172 | 3,913,397   |           |           |           |           |  |  |  |  |  |
| 2022     | 1,754,839 |             |           |           |           |           |  |  |  |  |  |

| Accident |     | Reported Counts |       |       |       |       |  |  |  |  |
|----------|-----|-----------------|-------|-------|-------|-------|--|--|--|--|
| Year     | 12  | 24              | 36    | 48    | 60    | 72    |  |  |  |  |
| 2017     | 705 | 864             | 996   | 1,080 | 1,147 | 1,185 |  |  |  |  |
| 2018     | 733 | 883             | 1,018 | 1,112 | 1,181 |       |  |  |  |  |
| 2019     | 734 | 900             | 1,028 | 1,148 |       |       |  |  |  |  |
| 2020     | 756 | 928             | 1,077 |       |       |       |  |  |  |  |
| 2021     | 773 | 947             |       |       |       |       |  |  |  |  |
| 2022     | 789 |                 |       |       |       |       |  |  |  |  |

| Accident |     | Closed Counts |     |       |       |       |  |  |  |  |
|----------|-----|---------------|-----|-------|-------|-------|--|--|--|--|
| Year     | 12  | 24            | 36  | 48    | 60    | 72    |  |  |  |  |
| 2017     | 310 | 571           | 780 | 938   | 1,077 | 1,179 |  |  |  |  |
| 2018     | 327 | 581           | 797 | 967   | 1,109 |       |  |  |  |  |
| 2019     | 323 | 587           | 802 | 1,000 |       |       |  |  |  |  |
| 2020     | 334 | 605           | 845 |       |       |       |  |  |  |  |
| 2021     | 353 | 622           |     |       |       |       |  |  |  |  |
| 2022     | 352 |               |     |       |       |       |  |  |  |  |

• The annual claim severity trend is 6.3%.

Your colleague has assumed that case reserve adequacy was strengthened in calendar year 2021.

(b) (1.5 points) Verify your colleague's assumption.

Your colleague recommends using the calendar year 2021 diagonal to adjust for a change in case reserve adequacy.

- (c) (0.5 points) Critique your colleague's recommendation.
- (d) (2 points) Construct a reported claims triangle adjusted for the change in case adequacy, basing the adjustments on the calendar year 2022 diagonal.

Version 2025-1



## GIRR Spring 2024 Question 2 (LOs 3e, 3g)

#### **Learning Outcomes:**

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 15.

## Question:

## 2.

Provide the response for this question in the Excel spreadsheet.

(5 points) You are estimating ultimate claims as of December 31, 2023 for a line of business that has seasonality.

| Accident  |           | Reported Claims |           |           |           |           |           |           |  |  |  |  |
|-----------|-----------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|--|--|
| Half-Year | 6         | 12              | 18        | 24        | 30        | 36        | 42        | 48        |  |  |  |  |
| 2020-1    | 1,778,236 | 1,817,664       | 1,906,195 | 1,918,947 | 1,938,911 | 1,949,451 | 1,951,269 | 1,951,269 |  |  |  |  |
| 2020-2    | 1,801,831 | 1,896,710       | 1,942,431 | 1,969,627 | 1,990,982 | 2,002,627 | 2,004,998 |           |  |  |  |  |
| 2021-1    | 1,930,879 | 1,983,793       | 2,069,155 | 2,084,933 | 2,109,125 | 2,121,231 |           |           |  |  |  |  |
| 2021-2    | 1,944,003 | 2,034,385       | 2,091,282 | 2,125,691 | 2,146,588 |           |           |           |  |  |  |  |
| 2022-1    | 2,075,131 | 2,126,932       | 2,205,071 | 2,220,455 |           |           |           |           |  |  |  |  |
| 2022-2    | 2,137,034 | 2,253,530       | 2,273,987 |           |           |           |           |           |  |  |  |  |
| 2023-1    | 2,243,409 | 2,283,355       |           |           |           |           |           |           |  |  |  |  |
| 2023-2    | 2,451,221 |                 |           |           |           |           |           |           |  |  |  |  |

There is no development after 48 months.

- (a) (2.5 points) Calculate the ultimate claims for accident year 2023 using the development method. Justify your selections.
- (b) (*1 point*) Calculate the accident year 2023 expected reported claims from December 31, 2023 to June 30, 2024.



Some lines of business require a tail factor.

- (c) (0.5 points) Describe one disadvantage of the Bondy method.
- (d) (*1 point*) State one advantage and one disadvantage of Boor's algebraic method.



## GIRR Spring 2024 Question 4 (LOs 3e, 3f)

#### Learning Outcomes:

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 17.

#### **Question:**

## **4**.

(4 points)

(a) (0.5 points) Provide one reason why the expected method is preferred over the development method when estimating ultimate claims for a new line of business.

ANSWER:

(b) (0.5 points) Explain why a pure premium approach is preferred over an expected claim ratio approach when developing expected claims for self-insurers.

ANSWER:

You are estimating ultimate claims as of December 31, 2023, using the expected method. You have estimated trended on-level claim ratios at 2023 cost levels for all accident years.

(c) (*1 point*) Provide two reasons why the trended on-level claim ratio for accident year 2023 might be excluded when selecting the 2023 cost level expected claim ratio.

ANSWER:



(d) (2 *points*) Explain the steps you would follow to apply the expected method to estimate ultimate salvage received for a collision line of business.

ANSWER:



## GIRR Spring 2024 Question 7 (LOs 1d, 3e, 3f, 3g)

#### Learning Outcomes:

- (1d) Understand the components of ultimate values.
- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 15, 17, 18.

#### **Question:**

## 7.

Provide the response for this question in the Excel spreadsheet.

(5 points) You are estimating IBNR for a line of business using the following information:

| Accident<br>Year<br>(AY) | Historical<br>Earned<br>Premiums | Premium<br>On-Level<br>Factor | Cumulative<br>Paid<br>Claims | Case<br>Estimates |
|--------------------------|----------------------------------|-------------------------------|------------------------------|-------------------|
| 2021                     | 10,119,409                       | 1.034                         | 5,155,384                    | 457,851           |
| 2022                     | 10,552,425                       | 1.020                         | 3,785,833                    | 896,859           |
| 2023                     | 10,850,455                       | 1.000                         | 2,247,631                    | 1,306,801         |

| <b>Reported Claim Development Factors by Development Months</b> |       |       |       |       |       |  |  |  |  |
|-----------------------------------------------------------------|-------|-------|-------|-------|-------|--|--|--|--|
| 12-24 24-36 36-48 48-60 60-72 72-Ult.                           |       |       |       |       |       |  |  |  |  |
| 1.445                                                           | 1.271 | 1.154 | 1.073 | 1.014 | 1.000 |  |  |  |  |

• The expected claim ratio at the 2023 cost level is 76.0%.

- The annual claim ratio trend is 6.1%.
- The annual premium trend is 0%.



- (a) (3.5 points) Calculate the IBNR for each AY as of December 31, 2023 using:
  - (i) the Development method,
  - (ii) the Bornhuetter Ferguson method, and
  - (iii) two iterations of the Benktander method.
- (b) (*1 point*) Explain if this business is performing better or worse than expected for AY 2023 using the methods above.

One of the weaknesses of the Benktander method is that there is no clear guidance with respect to the appropriate number of iterations to perform.

(c) (0.5 points) Identify one other weakness of the Benktander method.



## GIRR Spring 2024 Question 9 (LOs 3e, 3j)

#### **Learning Outcomes:**

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 19 and 22.

#### **Question:**

## 9.

(3 points)

(a) (*1 point*) Describe two differences between the Cape Cod method and the Generalized Cape Cod method for estimating ultimate claims.

ANSWER:

The Cape Cod method is similar to the Bornhuetter Ferguson method in that it is a blend of the development and expected methods.

(b) (*1 point*) Describe two major differences between the Bornhuetter Ferguson and Cape Cod methods.

ANSWER:

(c) (*1 point*) Describe two advantages that blended methods provide when evaluating and selecting estimates of ultimate claims.

ANSWER:



## GIRR Spring 2024 Question 10 (LOs 3d, 3e, 3g)

#### **Learning Outcomes:**

- (3d) Analyze development triangles for investigative testing.
- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 14 and 20.

#### **Question:**

## 10.

Provide the response for this question in the Excel spreadsheet.

(7 *points*) You are estimating ultimate claims for a line of business as of December 31, 2023. Your reserving software produces the following preliminary estimates based on age-to-age development factors.

| Accident |           |           | Reporte   | d Claims  |           |           | Ultimate  |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Year     | 12        | 24        | 36        | 48        | 60        | 72        | Claims    |
| 2018     | 2,547,815 | 3,882,690 | 4,892,823 | 5,569,866 | 5,949,436 | 6,457,536 | 7,009,030 |
| 2019     | 2,838,865 | 4,127,622 | 5,006,184 | 5,807,333 | 6,766,801 |           | 7,971,966 |
| 2020     | 2,937,668 | 4,227,315 | 5,435,742 | 6,403,965 |           |           | 8,424,818 |
| 2021     | 3,135,121 | 4,466,810 | 5,821,531 |           |           |           | 8,875,100 |
| 2022     | 3,231,963 | 4,537,564 |           |           |           |           | 8,754,568 |
| 2023     | 3,311,902 |           |           |           |           |           | 9,259,675 |

| Accident |           |           | Cumulative | Paid Claims |           |           | Ultimate   |
|----------|-----------|-----------|------------|-------------|-----------|-----------|------------|
| Year     | 12        | 24        | 36         | 48          | 60        | 72        | Claims     |
| 2018     | 1,473,977 | 2,934,650 | 4,236,143  | 5,227,761   | 5,923,948 | 6,457,536 | 7,039,187  |
| 2019     | 1,706,744 | 3,161,169 | 4,325,672  | 5,447,559   | 6,761,362 |           | 8,034,251  |
| 2020     | 1,733,016 | 3,228,227 | 4,689,331  | 6,256,636   |           |           | 8,826,037  |
| 2021     | 1,851,625 | 3,385,403 | 5,483,690  |             |           |           | 9,869,855  |
| 2022     | 1,838,698 | 3,759,628 |            |             |           |           | 9,954,417  |
| 2023     | 2,081,240 |           |            |             |           |           | 10,557,046 |



| Accident |     | Reported Counts |       |       |       |       |        |  |  |
|----------|-----|-----------------|-------|-------|-------|-------|--------|--|--|
| Year     | 12  | 24              | 36    | 48    | 60    | 72    | Counts |  |  |
| 2018     | 886 | 1,138           | 1,298 | 1,392 | 1,457 | 1,471 | 1,485  |  |  |
| 2019     | 899 | 1,134           | 1,275 | 1,392 | 1,464 |       | 1,492  |  |  |
| 2020     | 893 | 1,128           | 1,297 | 1,402 |       |       | 1,499  |  |  |
| 2021     | 909 | 1,117           | 1,299 |       |       |       | 1,503  |  |  |
| 2022     | 908 | 1,113           |       |       |       |       | 1,474  |  |  |
| 2023     | 899 |                 |       |       |       |       | 1,491  |  |  |

| Accident |     |     | Closed | Counts |       |       | Ultimate |
|----------|-----|-----|--------|--------|-------|-------|----------|
| Year     | 12  | 24  | 36     | 48     | 60    | 72    | Counts   |
| 2018     | 574 | 862 | 1,070  | 1,210  | 1,319 | 1,471 | 1,641    |
| 2019     | 589 | 862 | 1,048  | 1,209  | 1,436 |       | 1,786    |
| 2020     | 581 | 862 | 1,066  | 1,331  |       |       | 1,885    |
| 2021     | 593 | 847 | 1,199  |        |       |       | 2,000    |
| 2022     | 587 | 928 |        |        |       |       | 1,977    |
| 2023     | 626 |     |        |        |       |       | 1,990    |

- This line of business was stable prior to 2023.
- New procedures for processing and settling claims were introduced in 2023.
- Ultimate estimates shown above are based on simple development methods.
- (a) (2 points) Perform two diagnostic tests to confirm that there was a change in claim settlement patterns in 2023.

The annual claim severity trend is 5%.

(b) (*1 point*) Perform one diagnostic test to determine whether there was a change in case adequacy in 2023.

You have decided to use Berquist-Sherman adjustments to allow for changes in the claim settlement rates. Your analysis indicates that there is a simple relationship between cumulative paid claims and cumulative closed counts for all accident and development years. The ratio of cumulative paid claims to cumulative closed counts is 4,400.

- (c) (2 points) Calculate the adjusted paid claims triangle.
- (d) (0.5 points) Describe an alternative approach that could be used for determining ratios of paid claims to cumulative closed counts.
- (e) (0.5 points) Describe a possible problem with the alternative approach identified in part (d).

Your colleague recommends using the Berquist-Sherman approach that adjusts for both a change in case adequacy and a change in claim settlement patterns for this line of business.

(f) (*1 point*) Critique your colleague's recommendation.

Version 2025-1



## GIRR Spring 2024 Question 11 (LOs 3h, 3i)

#### **Learning Outcomes:**

- (3h) Explain the effect of changing conditions on the projection methods cited in (e)
- (3i) Assess the appropriateness of the projection methods cited in (e) in varying circumstances

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 21.

## **Question:**

# 11.

(4 points) You are estimating unpaid claims for lines of business where conditions have been changing.

A legislative reform limiting claim payments was implemented effective July 1, 2020.

- (a) (*1 point*) Describe how this reform would affect the reported claims development triangle evaluated as of December 31, 2023, assuming the following:
  - (i) The reform affected only new claims.
  - (ii) The reform affected new and open claims.

ANSWER:

(b) (*1 point*) Describe why the expected method could be well-suited to estimate claims under scenario (a)(i) above.

ANSWER:

(c) (*1 point*) Describe why a Berquist-Sherman data adjustment could be well-suited to estimate claims under scenario (a)(ii) above.

ANSWER:



(d) (0.5 points) Describe whether this reform would affect indemnity, ALAE, ULAE, or some combination.



(e) (0.5 points) Describe whether this reform would affect paid data, reported data, or both paid and reported data.

ANSWER:



## GIRR Spring 2024 Question 12 (LOs 3g, 5c, 5d)

#### **Learning Outcomes:**

- (3g) Estimate ultimate values using the methods cited in (3e).
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 16 and 26.

#### Question:

# 12.

Provide the response for this question in the Excel spreadsheet.

(7 *points*) You are estimating ultimate claims for a line of business as of December 31, 2023 using the development-based frequency-severity method.

(a) (*1 point*) Describe two options to consider when experience is not fully credible for trending.

You are given the following additional information:

| Accident | Earned    | Projected Ultima     | te Counts Based on     |
|----------|-----------|----------------------|------------------------|
| Year     | Exposures | <b>Closed Counts</b> | <b>Reported Counts</b> |
| 2018     | 16,451    | 1,641                | 1,485                  |
| 2019     | 16,557    | 1,786                | 1,492                  |
| 2020     | 16,815    | 1,885                | 1,499                  |
| 2021     | 16,915    | 2,000                | 1,503                  |
| 2022     | 17,147    | 1,977                | 1,474                  |
| 2023     | 17,461    | 1,990                | 1,491                  |

- This line of business was stable prior to 2023, when new claims processing and settlement policies were introduced in 2023.
- Ultimate estimates shown above are based on simple development methods.
- (b) (1.5 points) Recommend the annual claim frequency trend to use for this line of business. Justify your recommendation.



(c) (1.5 points) Calculate the ultimate counts using the development-based frequency-severity method with your selected frequency trend from part (b). Justify any selections.

|               | Projected Ultimate Severity Based on |                          |  |
|---------------|--------------------------------------|--------------------------|--|
| Accident Year | <b>Paid Severity</b>                 | <b>Reported Severity</b> |  |
| 2018          | 4,390                                | 4,719                    |  |
| 2019          | 4,602                                | 5,342                    |  |
| 2020          | 4,789                                | 5,618                    |  |
| 2021          | 5,085                                | 5,857                    |  |
| 2022          | 5,196                                | 5,923                    |  |
| 2023          | 5,456                                | 6,168                    |  |

You are given the following additional information:

The annual claim severity trend is 5%. The selected trend rate should recognize economic trend.

- (d) (0.5 points) State one other influence that the trend rate should also recognize.
- (e) (2.5 *points*) Calculate the ultimate claims using the development-based frequency-severity method. Justify any selections.



## GIRR Fall 2024 Question 2 (LOs 3e, 3f, 3g)

#### **Learning Outcomes:**

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 15 and 17.

## **Question:**

## 2.

Provide the response for this question in the Excel spreadsheet.

(5 points) You are estimating ultimate claims as of December 31, 2023 using the expected method.

(a) (0.5 points) Describe one advantage of using the pure premium approach rather than the claim ratio approach when using the expected method.

You are given:

|          |           |             |                 |               | Cumulative  |
|----------|-----------|-------------|-----------------|---------------|-------------|
|          |           |             | Premium         | Actual Paid   | Paid        |
| Accident | Earned    | Earned      | <b>On-Level</b> | Claims as of  | Development |
| Year     | Exposures | Premiums    | Factors         | Dec. 31, 2023 | Factors     |
| 2017     | 78,945    | 52,155,000  | 1.067           | 25,428,000    | 1.565       |
| 2018     | 78,248    | 53,621,000  | 1.029           | 22,854,000    | 1.701       |
| 2019     | 77,701    | 53,900,000  | 1.016           | 20,810,000    | 1.927       |
| 2020     | 75,377    | 54,236,000  | 0.980           | 18,966,000    | 2.262       |
| 2021     | 77,739    | 55,984,000  | 0.999           | 15,127,000    | 2.809       |
| 2022     | 76,371    | 56,409,000  | 1.025           | 11,397,000    | 3.831       |
| 2023     | 75,070    | 56,834,000  | 1.000           | 7,237,000     | 6.369       |
| Total    | 539,452   | 383,139,000 |                 | 121,819,000   |             |

• The annual claim ratio trend is 3%.



- (b) (0.5 points) Provide one reason why the expected method might be preferred over the development method in this scenario for analyzing accident year 2023 claims.
- (c) (*3 points*) Calculate the expected claims for accident year 2023 using the expected method with the following approaches:
  - (i) Claim ratio
  - (ii) Pure premium
- (d) (*1 point*) Estimate accident year 2023 claims expected to be paid between December 31, 2023 and December 31, 2024 using your results from part (c)(ii).



## GIRR Fall 2024 Question 7 (LOs 3h, 3i, 3j)

#### **Learning Outcomes:**

- (3h) Explain the effect of changing conditions on the projection methods cited in (3e).
- (3i) Assess the appropriateness of the projection methods cited in (3e) in varying circumstances.
- (3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 21 and 22.

#### Question:

# 7.

### (4 points)

(a) (0.5 points) Provide two reasons why actuaries use multiple methods to estimate ultimate claims.

ANSWER:

(b) (0.5 points) Provide two areas in which an actuary can exercise professional judgement in estimating ultimate claims, other than the selection of methods.

ANSWER:

You are reviewing the ultimate claims estimates for XYZ Insurance as of December 31, 2023.

XYZ's portfolio had been stable for several years, but experienced the following changes in recent years, which will affect actual ultimate claims:

- An improvement in claim ratio from the historical average of 70% to 65%,
- A 30% decrease in exposures, and
- A 20% acceleration in claims reported by the end of the first year.
- (c) (*3 points*) Explain how effective each of the following projection methods will be in responding to the recent changes at XYZ:
  - (i) Paid development method
  - (ii) Expected method



| (11) | .)    | Report | maetter | reigus | ion met | nou |  |  |
|------|-------|--------|---------|--------|---------|-----|--|--|
| А    | NSV   | VER:   |         |        |         |     |  |  |
| (    | (i)   |        |         |        |         |     |  |  |
| (    | (ii)  |        |         |        |         |     |  |  |
| (    | (iii) |        |         |        |         |     |  |  |
|      |       |        |         |        |         |     |  |  |

## (iii) Reported Bornhuetter Ferguson method



## GIRR Fall 2024 Question 10 (LOs 2a, 3e, 3g)

#### Learning Outcomes:

- (2a) Create development triangles of claims and counts from detailed claim transaction data.
- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 16 and 22.

## **Question:**

# 10.

Provide the response for this question in the Excel spreadsheet.

(7 *points*) General liability claims may have a long lag between the occurrence date and the report date.

- (a) (0.5 points) Provide an example of another line of business that often has a long lag between the occurrence date and the report date.
- (b) (0.5 points) Provide an example of a line of business where claim files are commonly reopened.

You are given:

| Accident |           | Cumulative Paid Claims |           |           |           |           |
|----------|-----------|------------------------|-----------|-----------|-----------|-----------|
| Year     | 12        | 24                     | 36        | 48        | 60        | 72        |
| 2018     | 1,518,006 | 3,284,534              | 4,838,338 | 6,146,551 | 6,945,034 | 7,149,672 |
| 2019     | 1,582,770 | 3,552,084              | 5,075,462 | 6,140,083 | 7,043,201 |           |
| 2020     | 1,573,601 | 3,607,985              | 4,923,578 | 6,208,567 |           |           |
| 2021     | 1,608,502 | 3,404,322              | 4,897,059 |           |           |           |
| 2022     | 1,448,977 | 3,339,496              |           |           |           |           |
| 2023     | 1,791,306 |                        |           |           |           |           |



A legislative change became effective July 1, 2021, reducing claim costs 20% for all claims paid on or after this date.

(c) (*2 points*) Construct a revised cumulative paid claims triangle adjusted for the legislative change.

You are given:

| Accident<br>Year | Projected Earned<br>Exposures | Projected<br>Ultimate Claims |
|------------------|-------------------------------|------------------------------|
| 2024             | 10,600                        | 7,105,054                    |
| 2025             | 10,710                        | 7,694,043                    |

- The annual claim frequency trend is expected to be -0.3%.
- The annual claim severity trend is expected to be 7.5%.
- The 2023 cost level claim frequency is 10.6%.
- The 2023 cost level severity is 5,900.
- (d) (*1 point*) Verify the projected ultimate claims for accident years 2024 and 2025.

The ultimate claims for all accident years are estimated as:

| Accident<br>Year | Projected<br>Ultimate Claims |
|------------------|------------------------------|
| 2018             | 7,149,672                    |
| 2019             | 7,289,724                    |
| 2020             | 7,484,846                    |
| 2021             | 7,571,028                    |
| 2022             | 7,534,985                    |
| 2023             | 9,222,361                    |
| 2024             | 7,105,054                    |
| 2025             | 7,694,043                    |

(e) (*3 points*) Calculate the claims expected to be paid in calendar years 2024 and 2025, using the results from part (c).



## GIRR Fall 2024 Question 12 (LOs 3f, 3g, 3j)

#### **Learning Outcomes:**

- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).
- (3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 15, 18, 19, and 22.

Actuarial Standards of Practice, Actuarial Standards Board of the American Academy of Actuaries, No. 25, Credibility Procedures, 2013.

### **Question:**

# 12.

Provide the response for this question in the Excel spreadsheet.

(7 points) You are given the following information for estimating ultimate claims:

| Accident |         | Reported Claims |         |         |         |
|----------|---------|-----------------|---------|---------|---------|
| Year     | 12      | 24              | 36      | 48      | 60      |
| 2019     | 540,061 | 575,731         | 648,087 | 683,622 | 702,734 |
| 2020     | 554,275 | 591,019         | 665,056 | 701,405 |         |
| 2021     | 567,907 | 656,134         | 731,837 |         |         |
| 2022     | 581,936 | 621,002         |         |         |         |
| 2023     | 596,836 |                 |         |         |         |

| Calendar | Earned    |
|----------|-----------|
| Year     | Premiums  |
| 2019     | 1,000,000 |
| 2020     | 1,040,000 |
| 2021     | 1,082,000 |
| 2022     | 1,125,000 |
| 2023     | 1,170,000 |

- This was a new book of business in 2019.
- A rate change of -5% was effective January 1, 2022. There were no other rate changes.
- The annual claim ratio trend is -2%.



- An unusual large claim of 50,000 occurred in accident year 2021. The claim was first reported in September 2022 and the claim estimate has not changed.
- The original Bondy method is used to estimate a tail factor at 60 months.
- The expected claim ratio based on industry data is 65% for all accident years. However, management is uncertain that industry data is representative of this book of business.
- (a) (1.5 points) Calculate projected ultimate claims for all accident years using the development method.
- (b) (0.5 points) Critique the appropriateness of selecting the development method for this line of business.
- (c) (*1 point*) Calculate projected ultimate claims for all accident years using the Bornhuetter Ferguson method.
- (d) (0.5 points) Critique the appropriateness of selecting the Bornhuetter Ferguson method for this line of business.
- (e) (*3 points*) Calculate projected ultimate claims for all accident years using the Cape Cod method.
- (f) (0.5 points) Critique the appropriateness of selecting the Cape Cod method for this line of business.



## GIRR Fall 2024 Question 13 (LOs 3e, 3g)

#### Learning Outcomes:

- (3e) Describe the key assumptions underlying the following projection methods: development method, frequency-severity methods, expected method, Bornhuetter Ferguson method, Benktander method, Cape Cod method, Generalized Cape Cod, and Berquist-Sherman adjustments to the development method.
- (3g) Estimate ultimate values using the methods cited in (3e).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 16 and 20.

#### Question:

## 13.

#### Provide the response for this question in the Excel spreadsheet.

(5 points) You are estimating ultimate claims using a frequency-severity method, and are given:

| Accident | Earned    | Reported<br>Claims as of | Projected Ultin<br>Developme |        |
|----------|-----------|--------------------------|------------------------------|--------|
| Year     | Exposures | Dec. 31, 2023            | Claims                       | Counts |
| 2017     | 4,082     | 5,002,004                | 5,002,004                    | 174    |
| 2018     | 4,248     | 5,420,340                | 5,451,477                    | 182    |
| 2019     | 4,274     | 5,649,182                | 5,729,118                    | 184    |
| 2020     | 4,437     | 6,034,903                | 6,218,509                    | 192    |
| 2021     | 4,438     | 6,167,181                | 6,510,280                    | 193    |
| 2022     | 4,668     | 5,673,216                | 7,159,008                    | 204    |
| 2023     | 4,706     | 2,889,081                | 7,850,014                    | 217    |

- The annual severity trend is 4.0%.
- A court ruling expanded policy coverage for claims occurring on or after January 1, 2023.
- The court ruling increased claim frequency by 5% but had no effect on claim severity.
- The earned exposures are not sensitive to inflation.

(a) (1 point) Recommend an annual claim frequency trend.



(b) (*3 points*) Calculate the projected ultimate claims for all accident years using the development-based frequency-severity method.

Other projection methods use triangles of closed count ratios.

- (c) (0.5 points) Describe how to calculate the *proportion of closed counts* triangle when using the frequency-severity closure method.
- (d) (0.5 points) Describe how to calculate the triangle of *disposal ratios* when using the Berquist-Sherman adjustment for changing settlement rates.



# GI 101 – LEARNING OBJECTIVE 4

#### 4. Topic: Financial Reporting

The candidate will understand financial reporting of claim liabilities with respect to unpaid unallocated loss adjustment expenses.



## GIRR Fall 2020 Question 15 (LOs 1d, 1i, 4b, 4c)

#### Learning Outcomes:

- (1d) Understand the components of ultimate values.
- (1i) Describe how and why data are segregated and aggregate.
- (4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.
- (4c) Evaluate and justify selections of unpaid unallocated loss adjustment expenses based on ratio and count-based methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 4, and 23.

### Question:

- **15.** (*4 points*) You are estimating unpaid ULAE.
- (a) (0.5 points) Describe one way a reinsurer might assess the reasonableness of an estimate of unpaid ULAE.

ANSWER:

You are given the following information for an insurance company:

|          |           |         | Ratio of ULAE to Claim |            |
|----------|-----------|---------|------------------------|------------|
| Calendar | Earned    | Paid    | Classical              | Kittel     |
| Year     | Exposures | ULAE    | Paid                   | Refinement |
| 2017     | 7,430     | 810,000 | 7.4%                   | 7.5%       |
| 2018     | 7,890     | 850,000 | 7.5%                   | 7.3%       |
| 2019     | 8,310     | 880,000 | 7.6%                   | 7.1%       |

- The Kittel refinement reflects the average of actual paid and reported claims.
- (b) (0.5 points) Recommend one of the two approaches from the table above to use in estimating unpaid ULAE. Justify your recommendation.

ANSWER:



You are given the following additional information:

|                | As of December 31, 2019 |
|----------------|-------------------------|
| Case Estimates | 3,510,000               |
| IBNR           | 1,600,000               |

- Approximately 80% of IBNR is a provision for development on known claims.
- Approximately 25% of claim department expenses relate to opening a claim file and 75% relate to maintaining and closing a claim file.
- (c) (1.5 points) Estimate unpaid ULAE as of December 31, 2019 using the approach you selected in part (b).

*The response for part (c) is to be provided in the Excel spreadsheet.* 

Unpaid ULAE as of December 31, 2018 was 270,000.

(d) (0.5 points) Determine calendar year 2019 incurred ULAE.

*The response for part (d) is to be provided in the Excel spreadsheet.* 

You work for an insurance company that writes only auto insurance. The company's practice is to set up zero case estimates for ALAE because ALAE for the company is relatively small and stable.

Your colleague recommends estimating unpaid ALAE using the same paid-to-paid approach as ULAE because there are no ALAE case estimates, the experience is stable, and auto insurance is the only line of business.

(e) (*1 point*) Critique your colleague's recommendation.

ANSWER:



## GIRR Spring 2021 Question 3 (LOs 3g, 4a, 4b, 4c, 5b, 5c, 5d, 5e)

#### **Learning Outcomes:**

- (3g) Estimate ultimate values using the methods cited in (3e).
- (4a) Describe the key assumptions underlying ratio and count-based methods for estimating unpaid unallocated loss adjustment expenses.
- (4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.
- (4c) Evaluate and justify selections of unpaid unallocated loss adjustment expenses based on ratio and count-based methods.
- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 16, 23, and 26.

#### **Question:**

# 3.

(7 *points*) You are estimating ultimate claims using the development-based frequency-severity method, and are given the following information:

| Accident | Earned    | Projected Ultimate Based on<br>Development Method |            |          |  |  |
|----------|-----------|---------------------------------------------------|------------|----------|--|--|
| Year     | Exposures | Counts                                            | Claims     | Severity |  |  |
| 2015     | 25,200    | 2,088                                             | 9,028,629  | 4,324    |  |  |
| 2016     | 26,700    | 2,194                                             | 9,779,132  | 4,458    |  |  |
| 2017     | 25,300    | 2,063                                             | 9,477,060  | 4,594    |  |  |
| 2018     | 24,500    | 1,983                                             | 9,378,997  | 4,733    |  |  |
| 2019     | 23,900    | 1,933                                             | 8,988,618  | 4,724    |  |  |
| 2020     | 24,200    | 1,709                                             | 7,810,625  | 4,749    |  |  |
| Total    | 149,800   | 11,970                                            | 54,463,061 |          |  |  |

You have noticed that the ultimate severity from the development method is not equal to the development method ultimate claims divided by the development method ultimate counts in this case.



(a) (0.5 points) Explain why this may happen when using the development-based frequency-severity method.

ANSWER:

(b) (2.5 points) Recommend a claim frequency at the accident year 2020 cost level. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (*1 point*) Calculate ultimate claims using the development-based frequency-severity method and the recommended claim frequency from part (b).

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information for calculating unpaid ULAE for this line of business:

|                        | 12     | 24    | 36    | 48    | 60    | 72    |
|------------------------|--------|-------|-------|-------|-------|-------|
| Cumulative paid claims |        |       |       |       |       |       |
| development factors by |        |       |       |       |       |       |
| maturity age (months)  | 11.245 | 2.017 | 1.228 | 1.063 | 1.010 | 1.000 |

| Calendar<br>Year | Paid ULAE |
|------------------|-----------|
| 2017             | 738,905   |
| 2018             | 851,350   |
| 2019             | 883,245   |
| 2020             | 879,224   |
| Total            | 3,352,724 |

- Ultimate claims are selected from the development-based frequency-severity method.
- You are using the classical paid method with a Mango-Allen smoothing adjustment to estimate unpaid ULAE.
- Approximately 25% of claim department expenses relate to opening a claim file and 75% relate to maintaining and closing a claim file.
- The total case estimate is 4,351,459.
- The total IBNR is 11,117,813.
- (d) (1.5 points) Calculate the expected claims paid for calendar years 2017 through 2020.

Provide the response for this part in the Excel spreadsheet.



(e) (*1 point*) Recommend a ULAE ratio using the classical paid-to-paid method with the Mango-Allen smoothing adjustment. Justify your recommendation.

Provide the response for this part in the Excel spreadsheet.

(f) (0.5 points) Calculate the unpaid ULAE.

*Provide the response for this part in the Excel spreadsheet.* 



## GIRR Spring 2021 Question 4 (LOs 3i, 4a)

#### **Learning Outcomes:**

- (3i) Assess the appropriateness of the projection methods cited in (e) in varying circumstances.
- (4a) Describe the key assumptions underlying ratio and count-based methods for estimating unpaid unallocated loss adjustment expenses.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 22 and 23.

## Question:

# 4.

(5 *points*) You are an insurance company actuary reviewing year-end reserves for a line of business with the following characteristics:

- The coverage is long-tailed.
- There are five years of company experience available including exposure, premium, rate changes, paid and reported claims, closed and reported claim counts, and paid ULAE.
- Business has been growing steadily over the last five years.
- The annual claim trend is 2%.
- Tort reform was implemented two years ago.
- Industry experience is available for a comparable coverage.
- (a) (*1 point*) Explain why the development method may not be appropriate for estimating unpaid claims for this coverage.

ANSWER:

(b) (2 points) Recommend an appropriate method for estimating unpaid claims for this coverage. Justify your recommendation.

ANSWER:

(c) (*1 point*) Explain why the classical paid-to-paid method may not be appropriate for estimating unpaid ULAE for this coverage.

ANSWER:

Version 2025-1



(d) (*1 point*) Recommend an appropriate method for estimating unpaid ULAE for this coverage. Justify your recommendation.

ANSWER:



## GIRR Fall 2021 Question 18 (LOs 1d, 3f, 3g, 4a, 4b)

#### **Learning Outcomes:**

- (1d) Understand the components of ultimate values.
- (3f) Demonstrate knowledge of good practice related to projecting ultimate values.
- (3g) Estimate ultimate values using the methods cited in (3e).
- (4a) Describe the key assumptions underlying ratio and count-based methods for estimating unpaid unallocated loss adjustment expenses.
- (4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 3, 15, and 23.

### **Question:**

# 18.

(6 points) You are projecting ultimate claims as of December 31, 2020 using the paid development method and are given the following data:

| Accident | 0   | Paid Claims (000) |       |       |       |       |       |       |
|----------|-----|-------------------|-------|-------|-------|-------|-------|-------|
| Year     | 12  | 24                | 36    | 48    | 60    | 72    | 84    | 96    |
| 2013     | 162 | 517               | 866   | 1,171 | 1,402 | 1,573 | 1,716 | 1,824 |
| 2014     | 171 | 523               | 875   | 1,142 | 1,372 | 1,565 | 1,712 |       |
| 2015     | 182 | 518               | 876   | 1,169 | 1,424 | 1,610 |       |       |
| 2016     | 190 | 543               | 923   | 1,219 | 1,460 |       |       |       |
| 2017     | 198 | 540               | 1,082 | 1,391 |       |       |       |       |
| 2018     | 205 | 560               | 968   |       |       |       |       |       |
| 2019     | 211 | 573               |       |       |       |       |       |       |
| 2020     | 224 |                   |       |       |       |       |       |       |

| Accident<br>Year | 12-24 | 24-36 | 36-48 | 48-60 | 60-72 | 72-84 | 84-96 |
|------------------|-------|-------|-------|-------|-------|-------|-------|
| 2013             | 3.191 | 1.675 | 1.352 | 1.197 | 1.122 | 1.091 | 1.063 |
| 2014             | 3.058 | 1.673 | 1.305 | 1.201 | 1.141 | 1.094 |       |
| 2015             | 2.846 | 1.691 | 1.334 | 1.218 | 1.131 |       |       |
| 2016             | 2.858 | 1.700 | 1.321 | 1.198 |       |       |       |
| 2017             | 2.727 | 2.004 | 1.286 |       |       |       |       |
| 2018             | 2.732 | 1.729 |       |       |       |       |       |
| 2019             | 2.716 |       |       |       |       |       |       |



Accident year 2017 includes a large claim of 150,000 paid and closed on March 15, 2019. The claim was unusual, and a similar claim is not likely to occur.

(a) (*1 point*) Select age-to-age development factors for all periods excluding the tail factor. Justify your selections.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

| Accident<br>Year | Projected Ultimate Claims<br>from Reported<br>Development Method (000) |
|------------------|------------------------------------------------------------------------|
| 2013             | 1,975                                                                  |
| 2014             | 1,974                                                                  |
| 2015             | 2,032                                                                  |
| 2016             | 2,078                                                                  |
| 2017             | 2,234                                                                  |
| 2018             | 2,216                                                                  |
| 2019             | 2,261                                                                  |
| 2020             | 2,295                                                                  |
| Total            | 17,065                                                                 |

(b) (1.5 points) Derive a paid tail factor using Boor's algebraic method.

*Provide the response for this part in the Excel spreadsheet.* 

Subsequently, the Chief Actuary provides you with an alternative tail factor of 1.072 based on industry benchmark data.

(c) (*1 point*) Calculate ultimate claims using the paid development method and the tail factor of 1.072.

Provide the response for this part in the Excel spreadsheet.

You are given the following additional information for estimating ULAE:

- Selected ultimate claims for each accident year are based on the results from the reported development method shown above (and not the paid development method).
- Actual reported claims as of December 31, 2020 are 14,660,000.



- The selected ratio of calendar year paid unallocated loss adjustment expenses (ULAE) to paid claims is 8%.
- (d) (*1 point*) Calculate the unpaid ULAE as of December 31, 2020 using the classical paid-to-paid method and a multiplier of 50%.

Provide the response for this part in the Excel spreadsheet.

(e) (*1 point*) Describe the Kittel refinement to the classical paid-to-paid method and the weakness it is designed to address.

*Provide the response for this part in the Excel spreadsheet.* 

(f) (0.5 points) Describe the Mango and Allen smoothing adjustment.

Provide the response for this part in the Excel spreadsheet.



### GIRR Spring 2022 Question 12 (LOs 4b, 4c)

#### **Learning Outcomes:**

- (4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.
- (4c) Evaluate and justify selections of unpaid unallocated loss adjustment expenses based on ratio and count-based methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 23.

#### **Question:**

# 12.

(4 points) You are given the following information for estimating unpaid ULAE as of December 31, 2021.

| Calendar |           | Paid       | Actual      | Claims      | Expecte     | d Claims    |
|----------|-----------|------------|-------------|-------------|-------------|-------------|
| Year     | Exposures | ULAE       | Paid        | Reported    | Paid        | Reported    |
| 2018     | 575,000   | 16,172,450 | 176,261,530 | 176,998,480 | 181,712,920 | 179,693,890 |
| 2019     | 592,250   | 16,807,540 | 195,338,130 | 194,011,760 | 188,100,130 | 190,637,250 |
| 2020     | 621,860   | 17,831,120 | 187,853,340 | 199,988,960 | 195,680,570 | 206,174,180 |
| 2021     | 652,960   | 19,284,360 | 197,358,720 | 211,828,510 | 205,582,000 | 222,977,380 |
| Total    | 2,442,070 | 70,095,470 | 756,811,720 | 782,827,710 | 771,075,620 | 799,482,700 |

|                | As of Dec. 31, 2021 |
|----------------|---------------------|
| Case Reserves  | 95,171,300          |
| IBNER Reserves | 43,591,100          |
| IBNYR Reserves | 26,803,900          |
| Total          | 165,566,300         |

- Claims for this coverage are typically low-frequency and high-severity.
- Calendar year 2019 includes an unusual large claim of 11 million which has been settled.
- 30% of claim department expenses relate to opening a claim file and 70% relate to maintaining and closing a claim file.
- (a) (1.5 points) Estimate unpaid ULAE as of December 31, 2021, using the classical paid-topaid method with a simple four-year average of historical experience, and a pure IBNR refinement.



*Provide the response for this part in the Excel spreadsheet.* 

(b) (1.5 points) Estimate unpaid ULAE as of December 31, 2021 using the Kittel refinement with the Mango and Allen smoothing adjustment, a simple four-year average of historical experience, and a pure IBNR refinement.

Provide the response for this part in the Excel spreadsheet.

(c) (*1 point*) Critique the appropriateness of each result from (a) and (b).

*Provide the response for this part in the Excel spreadsheet.* 



## GIRR Fall 2022 Question 12 (LOs 4a, 4b, 4c)

#### **Learning Outcomes:**

- (4a) Describe the key assumptions underlying ratio and count-based methods for estimating unpaid unallocated loss adjustment expenses.
- (4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.
- (4c) Evaluate and justify selections of unpaid unallocated loss adjustment expenses based on ratio and count-based methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 23.

#### **Question:**

## 12.

(5 points) You are estimating unpaid unallocated loss adjustment expenses (ULAE) as of December 31, 2021 using the Wendy Johnson count-based method, and are given the following weights for three different claim types:

| Newly Reported Counts | 25% |
|-----------------------|-----|
| Open Counts           | 55% |
| Closed Counts         | 20% |

Selected claim count weights are typically based on special studies.

(a) (0.5 points) Describe one such special study.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

| Accident |       | Increi | mental R | eported | Counts |    |
|----------|-------|--------|----------|---------|--------|----|
| Year     | 12    | 24     | 36       | 48      | 60     | 72 |
| 2016     | 1,033 | 28     | 26       | 1       | 0      | 0  |
| 2017     | 1,081 | 32     | 16       | 0       | 0      |    |
| 2018     | 1,122 | 59     | 8        | 0       |        |    |
| 2019     | 828   | 41     | 25       |         |        |    |
| 2020     | 799   | 34     |          |         |        |    |
| 2021     | 806   |        |          |         |        |    |



| Accident |     | Incre | emental | Closed C | ounts |    |
|----------|-----|-------|---------|----------|-------|----|
| Year     | 12  | 24    | 36      | 48       | 60    | 72 |
| 2016     | 636 | 210   | 87      | 21       | 4     | 1  |
| 2017     | 650 | 263   | 64      | 10       | 0     |    |
| 2018     | 694 | 274   | 71      | 12       |       |    |
| 2019     | 521 | 222   | 69      |          |       |    |
| 2020     | 511 | 210   |         |          |       |    |
| 2021     | 530 |       |         |          |       |    |

| Calendar Year | Paid ULAE |
|---------------|-----------|
| 2018          | 718,960   |
| 2019          | 738,400   |
| 2020          | 746,800   |
| 2021          | 787,600   |

- The annual claim trend is 2%.
- (b) (*3 points*) Recommend an average ULAE per weighted count. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following projected reported and closed claim counts as of December 31, 2021:

| Calendar | Newly Reported |                      |
|----------|----------------|----------------------|
| Year     | Counts         | <b>Closed Counts</b> |
| 2022     | 208            | 528                  |
| 2023     | 69             | 350                  |
| 2024     | 5              | 150                  |
| 2025     | 0              | 108                  |
| 2026     | 0              | 25                   |

(c) (1.5 points) Calculate estimated unpaid ULAE as of December 31, 2021.

Provide the response for this part in the Excel spreadsheet.



### GIRR Spring 2023 Question 9 (LOs 4a, 4b, 4c)

#### **Learning Outcomes:**

- (4a) Describe the key assumptions underlying ratio and count-based methods for estimating unpaid unallocated loss adjustment expenses.
- (4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.
- (4c) Evaluate and justify selections of unpaid unallocated loss adjustment expenses based on ratio and count-based methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 23.

#### **Question:**

## 9.

(5 points) You are estimating unpaid ULAE as of December 31, 2022 for a line of business that has experienced significant inflation over the past five years. You are given the following:

| Report |                  | Estimated Ultimate |
|--------|------------------|--------------------|
| Year   | Earned Exposures | Claims             |
| 2017   | 23,286           | 8,297,960          |
| 2018   | 23,595           | 9,230,643          |
| 2019   | 23,886           | 10,390,684         |
| 2020   | 24,423           | 11,357,111         |
| 2021   | 24,490           | 12,811,927         |
| 2022   | 25,103           | 14,531,428         |

| Maturity<br>Age in<br>months | Reported Age-to-<br>Ultimate<br>Development Factors |
|------------------------------|-----------------------------------------------------|
| 12                           | 2.306                                               |
| 24                           | 1.479                                               |
| 36                           | 1.137                                               |
| 48                           | 1.023                                               |
| 60                           | 1.000                                               |



| Calendar<br>Year | Paid<br>ULAE | Expected<br>Paid Claims | Expected Reported Claims |
|------------------|--------------|-------------------------|--------------------------|
| 2019             | 725,000      | 8,950,624               | 9,323,021                |
| 2020             | 825,176      | 9,921,833               | 10,304,355               |
| 2021             | 935,423      | 11,058,159              | ?                        |
| 2022             | 1,062,610    | 12,393,344              | ?                        |

(a) (*1 point*) Explain why the classical paid-to-paid method may not be appropriate for estimating unpaid ULAE in this case.

*Provide the response for this part in the Excel spreadsheet.* 

(b) (2.5 points) Calculate the ULAE ratio for each year using the Mango and Allen smoothing adjustment based on paid and reported claims data.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (0.5 points) Recommend a ULAE ratio to use for this line of business. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

You are provided with the following additional information:

- 40% of ULAE is associated with opening a claim file and 60% relates to maintaining and closing a claim file
- IBNR is 13,974,912
- Case estimate is 4,965,557
- (d) (*1 point*) Calculate unpaid ULAE as of December 31, 2022 using the recommended ratio from part (c).

*Provide the response for this part in the Excel spreadsheet.* 



## GIRR Fall 2023 Question 4 (LOs 4b)

#### **Learning Outcomes:**

(4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 23.

### **Question:**

## **4**.

(5 *points*) You are estimating unpaid ULAE as of December 31, 2022 using the Wendy Johnson count-based method. You are given the following. Forecasted incremental reported counts are highlighted with a shaded background.

| Accident  |     | Incremental Reported Counts |           |    |    |    | Ultimate |        |
|-----------|-----|-----------------------------|-----------|----|----|----|----------|--------|
| Year (AY) | 12  | 24                          | 36        | 48 | 60 | 72 | 84       | Counts |
| 2017      | 401 | 111                         | 78        | 69 | 47 | 26 | 42       | 774    |
| 2018      | 410 | 103                         | 95        | 68 | 39 | 45 | 23       | 783    |
| 2019      | 410 | 114                         | 94        | 67 | 47 | 47 | 24       | 803    |
| 2020      | 410 | 120                         | 95        | 67 | 50 | 51 | 25       | 818    |
| 2021      | 425 | 111                         | <i>95</i> | 66 | 49 | 49 | 25       | 820    |
| 2022      | 434 | 120                         | 96        | 66 | 50 | 50 | 25       | 841    |

|       | Selected H | Ratios of Rej | ported Coun | ts to Ultima | te Counts |       |
|-------|------------|---------------|-------------|--------------|-----------|-------|
| 12    | 24         | 36            | 48          | 60           | 72        | 84    |
| 0.510 | 0.654      | 0.770         | 0.850       | 0.910        | 0.970     | 1.000 |

(a) (*1 point*) Verify that the forecasted incremental reported count for AY 2021 at 36 months is 95.



| Accident | Incremental Closed Counts |     |     |     |     |    |    |
|----------|---------------------------|-----|-----|-----|-----|----|----|
| Year     | 12                        | 24  | 36  | 48  | 60  | 72 | 84 |
| 2017     | 138                       | 166 | 132 | 122 | 99  | 73 | 44 |
| 2018     | 141                       | 160 | 154 | 119 | 92  | 73 | 44 |
| 2019     | 141                       | 171 | 148 | 123 | 99  | 75 | 46 |
| 2020     | 141                       | 177 | 149 | 127 | 101 | 77 | 46 |
| 2021     | 146                       | 170 | 154 | 126 | 101 | 77 | 46 |
| 2022     | 149                       | 177 | 158 | 129 | 102 | 79 | 47 |

You are given the following additional information:

| Calendar<br>Year | Paid<br>ULAE | Newly Reported<br>Counts | Open<br>Counts | Closed<br>Counts |
|------------------|--------------|--------------------------|----------------|------------------|
| 2020             | 640,000      | 796                      | 786            | 792              |
| 2021             | 675,000      | 819                      | 802            | 803              |
| 2022             | 692,000      | 814                      | 816            | 800              |

Use the following weights for the three types of claim counts:

| Newly reported counts | 25% |
|-----------------------|-----|
| Open counts           | 65% |
| Closed counts         | 10% |

- The past annual expense trend rate through 2023 is 2%.
- The future annual expense trend rate after 2023 is 3%.
- (b) (4 points) Estimate unpaid ULAE as of December 31, 2022 using a simple three-year average of historical experience.



### GIRR Spring 2024 Question 8 (LOs 4a, 4b, 4c)

#### **Learning Outcomes:**

- (4a) Describe the key assumptions underlying ratio and count-based methods for estimating unpaid unallocated loss adjustment expenses.
- (4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.
- (4c) Evaluate and justify selections of unpaid unallocated loss adjustment expenses based on ratio and count-based methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 23.

#### **Question:**

## 8.

**O.** Provide the response for this question in the Excel spreadsheet.

(6 points) According to Mango and Allen, one reason the classical paid-to-paid method produces a conservative estimate of unpaid ULAE is that the cost of ULAE per thousand dollars of claims is a decreasing function of the average claim size.

- (a) (*1 point*) Provide another reason why the classical paid-to-paid method overstates unpaid ULAE, even in a steady state environment.
- (b) (*1 point*) Describe two situations where the Mango and Allen smoothing adjustment is particularly valuable in producing a more reasonable estimate of unpaid ULAE.

Insurer STL started writing Professional Liability business on January 1, 2019. You are given the following:

| Report | Estimated              |
|--------|------------------------|
| Year   | <b>Ultimate Claims</b> |
| 2019   | 5,331,195              |
| 2020   | 4,622,596              |
| 2021   | 5,116,924              |
| 2022   | 5,524,846              |
| 2023   | 6,060,412              |



| Maturity Age | <b>Reported Age-to-</b> |
|--------------|-------------------------|
| in Months    | <b>Ultimate Factors</b> |
| 12           | 3.505                   |
| 24           | 2.020                   |
| 36           | 1.765                   |
| 48           | 1.420                   |
| 60           | 1.165                   |

| Calendar |           | Expected           |
|----------|-----------|--------------------|
| Year     | Paid ULAE | <b>Paid Claims</b> |
| 2019     | 278,480   | 991,462            |
| 2020     | 323,800   | 1,170,742          |
| 2021     | 369,200   | 1,573,118          |
| 2022     | 448,080   | 2,346,706          |
| 2023     | 675,994   | 3,297,712          |

- (c) (*3 points*) Calculate the ULAE ratio for each year using the Mango and Allen smoothing adjustment based on paid <u>and</u> reported claim data.
- (d) (0.5 points) Recommend a ULAE ratio to use for this line of business. Justify your recommendation.

You are provided with the following additional information:

- 30% of ULAE is associated with opening a claim file, while 70% relates to maintaining and closing a claim file
- Total claim liabilities are 5,750,000
- Case estimates for existing reported claims are 3,250,000
- (e) (0.5 points) Calculate unpaid ULAE as of December 31, 2023 using the recommended ratio from part (d).



### GIRR Fall 2024 Question 9 (LOs 4a, 4b)

#### **Learning Outcomes:**

- (4a) Describe the key assumptions underlying ratio and count-based methods for estimating unpaid unallocated loss adjustment expenses.
- (4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 23.

#### **Question:**

## 9.

Provide the response for this question in the Excel spreadsheet.

#### (7 points)

- (a) (0.5 points) Describe why unallocated loss adjustment expenses (ULAE) are usually analyzed on a calendar year basis.
- (b) (0.5 points) Describe a weakness of the classical paid-to-paid method that the Kittel refinement is intended to address.

Count-based ULAE methods resolve two major drawbacks of ratio-based ULAE methods.

(c) (*1 point*) Describe these two major drawbacks.

You are given the following information for estimating unpaid ULAE as of December 31, 2023:

| Calendar<br>Year | Paid<br>Claims | Paid<br>ULAE |
|------------------|----------------|--------------|
| 2021             | 30,400,000     | 1,489,600    |
| 2022             | 31,698,113     | 1,680,000    |
| 2023             | 28,000,000     | 1,596,000    |

|                | As of Dec. 31, 2023 |
|----------------|---------------------|
| Case Estimates | 19,507,585          |
| IBNER          | 7,861,668           |
| IBNYR          | 4,812,040           |



- Approximately 25% of claim department expenses relate to opening a claim file and 75% relate to maintaining and closing a claim file.
- (d) (1.5 points) Estimate unpaid ULAE as of December 31, 2023 using the classical paid-to-paid method.

You are given the following additional information to estimate unpaid ULAE using the Wendy Johnson count-based method.

|                  | Historical ULAE Counts |       |        |
|------------------|------------------------|-------|--------|
| Calendar<br>Year | Newly<br>Reported      | Open  | Closed |
| 2021             | 2,325                  | 1,336 | 2,370  |
| 2022             | 2,550                  | 1,391 | 2,495  |
| 2023             | 2,528                  | 1,402 | 2,517  |

|                  | <b>Projected ULAE Counts</b> |       |        |
|------------------|------------------------------|-------|--------|
| Calendar<br>Year | Newly<br>Reported            | Open  | Closed |
| 2024             | 1,067                        | 1,044 | 1,425  |
| 2025             | 122                          | 323   | 843    |
| 2026             | -                            | -     | 323    |

|                       | Claim Count Weights |
|-----------------------|---------------------|
| Newly reported counts | 30%                 |
| Open counts           | 50%                 |
| Closed counts         | 20%                 |

- Historical annual expense trend through 2023 has been 0%.
- Prospective annual expense trend after 2023 is expected to be 2%.
- (e) (*1 point*) Demonstrate that the projected open counts for calendar years 2024, 2025, and 2026 are calculated correctly based on newly reported claims and closed claims.
- (f) (2.5 points) Estimate unpaid ULAE as of December 31, 2023 using the Wendy Johnson method.



# GI 101 – LEARNING OBJECTIVE 5

5. Topic: Trending

The candidate will understand trending procedures as applied to ultimate claims, exposures and premiums.



## GIRR Fall 2020 Question 16 (LOs 2d, 5b, 5e, 6g)

### **Learning Outcomes:**

- (2d) Adjust historical earned premiums to current rate levels.
- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.

## **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13, 26, 27, and 32.

## Question:

**16.** (*7 points*) You are conducting a ratemaking analysis for an automobile line of business and are given the following information:

| Rate Change History |          |  |  |  |
|---------------------|----------|--|--|--|
| Effective Date Rate |          |  |  |  |
| of Rate Change      | Change % |  |  |  |
| July 1, 2015        | 8.0%     |  |  |  |
| January 1, 2017     | 10.0%    |  |  |  |
| January 1, 2019     | 5.0%     |  |  |  |

- Premiums are written and earned evenly throughout the year.
- All policies are written for 12-month policy terms.
- In addition to the above rate changes, there was a regulation change where all premiums in force on July 1, 2017 were required to be reduced by 20%.
- (a) (*2 points*) Calculate premium on-level factors for accident years 2015-2019 to use for ratemaking purposes.

*The response for part (a) is to be provided in the Excel spreadsheet.* 

You are given the following additional information:



| Accident<br>Year | Earned<br>Premiums | Ultimate<br>Claims |
|------------------|--------------------|--------------------|
| 2015             | 11,755,570         | 8,130,150          |
| 2016             | 11,864,520         | 7,970,110          |
| 2017             | 12,406,530         | 7,781,380          |
| 2018             | 12,492,860         | 8,001,680          |
| 2019             | 12,394,530         | 7,995,960          |

- The annual premium trend is 1%.
- The annual pure premium trend is 4%.
- The new rates will be effective November 1, 2020 through October 31, 2021.
- The historical data is considered fully credible for ratemaking purposes.
- The regulation change which reduced premiums also reduced claim costs by 20% for all accidents occurring on or after July 1, 2017.
- (b) (2.5 points) Calculate the trended on-level claim ratios for each accident year.

*The response for part (b) is to be provided in the Excel spreadsheet.* 

(c) (*1 point*) Recommend a trended claim ratio to use for ratemaking. Justify your recommendation.

*The response for part (c) is to be provided in the Excel spreadsheet.* 

You are given the following additional information:

The ratio of ULAE to claims is 10%.

- The ratio of fixed expenses to premiums at current rates is 6%.
- The ratio of variable expenses to premiums is 19%.
- The ratio of profit and contingencies to premiums is 5%.
- (d) (0.5 points) Calculate the indicated rate change.

*The response for part (d) is to be provided in the Excel spreadsheet.* 

The purpose of the legislative change effective July 1, 2017 was to reduce increases in premiums arising from poor industry claims experience. As a result, management questions your required increase of 5% in 2019.

(e) (*1 point*) Explain why an indicated rate increase of 5% is not necessarily indicative of deteriorating experience.

ANSWER:



## GIRR Fall 2020 Question 20 (LOs 5a, 5b, 5c, 5d, 5e)

### **Learning Outcomes:**

- (5a) Identify and describe the influences of portfolio changes on claim frequency and severity.
- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 27.

## **Question:**

## 20.

(5 *points*) You are trending earned premiums for ratemaking purposes and are given the following information:

|                   | Ear     | Earned Exposures by Policy Limit |           |           |  |  |
|-------------------|---------|----------------------------------|-----------|-----------|--|--|
| Experience Period | 500,000 | 1,000,000                        | 1,500,000 | 2,000,000 |  |  |
| 2014              | 5,056   | 4,424                            | 3,476     | 2,844     |  |  |
| 2015              | 5,010   | 4,843                            | 3,841     | 3,006     |  |  |
| 2016              | 4,816   | 4,816                            | 4,128     | 3,440     |  |  |
| 2017              | 4,200   | 4,872                            | 4,032     | 3,696     |  |  |
| 2018              | 3,588   | 4,524                            | 3,900     | 3,588     |  |  |
| 2019              | 3,108   | 4,292                            | 3,848     | 3,552     |  |  |

|                                 | Increased Limits Factors by Policy Limit |      |      |      |  |  |
|---------------------------------|------------------------------------------|------|------|------|--|--|
|                                 | 500,000 1,000,000 1,500,000 2,00         |      |      |      |  |  |
| In effect prior to Nov. 1, 2020 | 0.82                                     | 1.00 | 1.15 | 1.27 |  |  |
| In effect starting Nov. 1, 2020 | 0.85                                     | 1.00 | 1.13 | 1.24 |  |  |

(a) (1.5 points) Calculate the annual premium trend due to the shift in policy limits for each year.

*The response for part (a) is to be provided in the Excel spreadsheet.* 



(b) (*1 point*) Recommend the annual premium trend due to the shift in policy limits to use for ratemaking. Justify your recommendation.

*The response for part (b) is to be provided in the Excel spreadsheet.* 

A deductible analysis resulted in an annual trend of -0.4% due to a shift in deductibles.

(c) (1.5 points) Explain why the annual premium trend due to a shift in policy limits tends to be positive while the annual premium trend due to a shift in deductibles tends to be negative.

ANSWER:

You are given the following additional information:

- Calendar year 2017 on-level earned premium is 17,808,000.
- The new rates will be effective March 1, 2021 through February 28, 2022.
- All policies are written for 6-month policy terms.
- (d) (*1 point*) Calculate the calendar year 2017 on-level earned premium trended for ratemaking purposes.

*The response for part (d) is to be provided in the Excel spreadsheet.* 



## GIRR Spring 2021 Question 3 (LOs 3g, 4a, 4b, 4c, 5b, 5c, 5d, 5e)

### **Learning Outcomes:**

- (3g) Estimate ultimate values using the methods cited in (3e).
- (4a) Describe the key assumptions underlying ratio and count-based methods for estimating unpaid unallocated loss adjustment expenses.
- (4b) Estimate unpaid unallocated loss adjustment expenses using ratio and count-based methods.
- (4c) Evaluate and justify selections of unpaid unallocated loss adjustment expenses based on ratio and count-based methods.
- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 16, 23, and 26.

## **Question:**

## 3.

(7 *points*) You are estimating ultimate claims using the development-based frequency-severity method, and are given the following information:

|                  | БТ                  | Projected Ultimate Based on<br>Development Method |            |          |  |  |
|------------------|---------------------|---------------------------------------------------|------------|----------|--|--|
| Accident<br>Year | Earned<br>Exposures | Counts                                            | Claims     | Severity |  |  |
| 2015             | 25,200              | 2,088                                             | 9,028,629  | 4,324    |  |  |
| 2016             | 26,700              | 2,194                                             | 9,779,132  | 4,458    |  |  |
| 2017             | 25,300              | 2,063                                             | 9,477,060  | 4,594    |  |  |
| 2018             | 24,500              | 1,983                                             | 9,378,997  | 4,733    |  |  |
| 2019             | 23,900              | 1,933                                             | 8,988,618  | 4,724    |  |  |
| 2020             | 24,200              | 1,709                                             | 7,810,625  | 4,749    |  |  |
| Total            | 149,800             | 11,970                                            | 54,463,061 |          |  |  |

You have noticed that the ultimate severity from the development method is not equal to the development method ultimate claims divided by the development method ultimate counts in this case.



(a) (0.5 points) Explain why this may happen when using the development-based frequency-severity method.

ANSWER:

(b) (2.5 points) Recommend a claim frequency at the accident year 2020 cost level. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (*1 point*) Calculate ultimate claims using the development-based frequency-severity method and the recommended claim frequency from part (b).

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information for calculating unpaid ULAE for this line of business:

|                        | 12     | 24    | 36    | 48    | 60    | 72    |
|------------------------|--------|-------|-------|-------|-------|-------|
| Cumulative paid claims |        |       |       |       |       |       |
| development factors by |        |       |       |       |       |       |
| maturity age (months)  | 11.245 | 2.017 | 1.228 | 1.063 | 1.010 | 1.000 |

| Calendar<br>Year | Paid ULAE |
|------------------|-----------|
| 2017             | 738,905   |
| 2018             | 851,350   |
| 2019             | 883,245   |
| 2020             | 879,224   |
| Total            | 3,352,724 |

- Ultimate claims are selected from the development-based frequency-severity method.
- You are using the classical paid method with a Mango-Allen smoothing adjustment to estimate unpaid ULAE.
- Approximately 25% of claim department expenses relate to opening a claim file and 75% relate to maintaining and closing a claim file.
- The total case estimate is 4,351,459.
- The total IBNR is 11,117,813.
- (d) (1.5 points) Calculate the expected claims paid for calendar years 2017 through 2020.



(e) (*1 point*) Recommend a ULAE ratio using the classical paid-to-paid method with the Mango-Allen smoothing adjustment. Justify your recommendation.

Provide the response for this part in the Excel spreadsheet.

(f) (0.5 points) Calculate the unpaid ULAE.



## GIRR Spring 2021 Question 12 (LOs 5b, 5c, 5d, 5e, 6g, 6h)

### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.
- (6h) Demonstrate the use of credibility in ratemaking.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 27 and 32.

## **Question:**

## 12.

| Calendar<br>Year | Written<br>Exposures | Earned<br>Exposures | On-Level Written<br>Premiums | On-Level Earned<br>Premiums |
|------------------|----------------------|---------------------|------------------------------|-----------------------------|
| 2011             | 12,150               | 12,082              | 6,561,000                    | 6,427,624                   |
| 2012             | 12,393               | 12,332              | 6,772,527                    | 6,652,473                   |
| 2013             | 12,889               | 12,765              | 7,123,878                    | 6,979,015                   |
| 2014             | 13,920               | 13,662              | 7,795,279                    | 7,565,041                   |
| 2015             | 14,616               | 14,442              | 8,363,476                    | 8,175,282                   |
| 2016             | 14,762               | 14,726              | 8,555,141                    | 8,441,915                   |
| 2017             | 14,319               | 14,430              | 8,409,605                    | 8,378,940                   |
| 2018             | 13,460               | 13,675              | 7,990,486                    | 8,034,240                   |
| 2019             | 13,191               | 13,258              | 7,928,680                    | 7,888,949                   |
| 2020             | 13,851               | 13,686              | 8,428,619                    | 8,248,676                   |

(6 points) You are given the following information:

(a) (2 points) Recommend the annual premium trend to use for ratemaking. Justify your recommendation.



You are given the following additional information:

- New rates will be effective August 1, 2021 for six months.
- All policies are written as 12-month policies.

| Accident | Trended                |  |  |
|----------|------------------------|--|--|
| Year     | <b>Ultimate Claims</b> |  |  |
| 2016     | 6,837,098              |  |  |
| 2017     | 6,467,985              |  |  |
| 2018     | 5,847,762              |  |  |
| 2019     | 5,734,244              |  |  |
| 2020     | 5,674,781              |  |  |

(b) (1.5 points) Calculate the trended claim ratio for each accident year.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (0.5 points) Recommend a trended claim ratio to use for ratemaking. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

- The annual pure premium trend is 5%.
- The complement of credibility is derived using the data from the last ratemaking analysis.
- The last ratemaking analysis was for policies effective January 1, 2021 through June 30, 2021, where
  - $\circ$  the indicated rate change was 4%,
  - the approved rate change was 2%, and
  - the permissible claim ratio was 55%.
- (d) (*1 point*) Calculate the claim ratio to use for the complement of credibility.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

- The ratio of fixed expenses to premiums at current rates including ULAE is 15%.
- The ratio of variable expenses to premiums is 11%.
- The ratio of profit and contingencies to premiums is 4%.
- The credibility assigned to the experience claim ratio is 77%.



(e) (*1 point*) Calculate the indicated rate change.



## GIRR Fall 2021 Question 4 (LOs 5b, 5e, 6d, 6e, 6g)

### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6d) Calculate loadings for catastrophes and large claims.
- (6e) Apply loadings for catastrophes and large claims in ratemaking.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 27, 31, and 32.

## **Question:**

## 4.

(4 points) XYZ insurer is thinking of offering an earthquake endorsement to its basic homeowners policy. You are given the following information:

- Using July 1, 2020 in-force policies, expected claims from the earthquake catastrophe model are 225,000 based on an October 1, 2020 cost level.
- Earned house years for accident year 2020 are 15,000.
- The annual exposure trend is 3.5%.
- The annual severity trend is 7%.
- New rates are to be effective July 1, 2022 for one year with all policies written as 12month policies.
- (a) (2 points) Calculate the pure premium for the earthquake endorsement.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information for the earthquake endorsement:

- The fixed cost per policy is 5.
- The variable expense to premium ratio is 10%.
- The risk load is 25% of premium.
- (b) (0.5 points) Calculate the premium for the earthquake endorsement.

Provide the response for this part in the Excel spreadsheet.

Version 2025-1



|               | Basic Homeowners(excluding optional earthquake endorsement)On Level EarnedPremiumUltimate Claims |           |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------|-----------|--|--|--|
| Accident Year |                                                                                                  |           |  |  |  |
| 2018          | 15,500,000                                                                                       | 9,000,000 |  |  |  |
| 2019          | 16,250,000                                                                                       | 8,000,000 |  |  |  |
| 2020          | 17,000,000                                                                                       | 8,200,000 |  |  |  |

You are given the following information for the basic homeowners coverage:

- The current rate level is 1,050.
- The annual premium trend is 2%.
- The permissible claim ratio is 57%.
- (c) (*1 point*) Calculate the indicated rate for the basic homeowners coverage. Justify any selections.

*Provide the response for this part in the Excel spreadsheet.* 

Since the earthquake coverage is an optional endorsement, management proposes that there should not be any fixed and variable expense charged to this optional coverage.

(d) (0.5 points) State whether you agree with management's proposal. Justify your response.



## GIRR Fall 2021 Question 5 (LOs 5b, 5c)

#### Learning Outcomes:

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 27.

## **Question:**

# 5.

## (5 points)

(a) (*1 point*) Provide two circumstances in which exposure and premium trend adjustments need to be considered for a ratemaking analysis.

ANSWER:

ABC Insurer has been offering mileage discounts to its automobile insurance policyholders who drive below a certain mileage each year. You are given the following information:

|               | Earned Proportion of Automobile<br>Policyholders with<br>5% Discount 10% Discount |       |  |  |  |
|---------------|-----------------------------------------------------------------------------------|-------|--|--|--|
| Calendar Year |                                                                                   |       |  |  |  |
| 2016          | 5.2%                                                                              | 9.3%  |  |  |  |
| 2017          | 5.0%                                                                              | 10.0% |  |  |  |
| 2018          | 4.5%                                                                              | 11.0% |  |  |  |
| 2019          | 4.5%                                                                              | 12.0% |  |  |  |
| 2020          | 6.5%                                                                              | 25.0% |  |  |  |

- Policyholders who drive more than 5,000 miles per year and less than 7,500 miles per year qualify for a 5% discount.
- Policyholders who drive less than 5,000 miles per year qualify for a 10% discount.
- Due to the pandemic in 2020, there was a significant one-time decrease in the distance driven by many policyholders.
- Policies are annual and written and earned evenly throughout the year.



(b) (1.5 points) Calculate and select the annual premium trend due to the change in discount level. Justify your selection.

*Provide the response for this part in the Excel spreadsheet.* 

You are conducting a premium trend analysis for rates to be effective on February 1, 2022, for one year and are given the following additional information:

- The annual premium trend due to change in discount level is expected to be -0.2% post 2020.
- The annual trend due to changes in policy limits is 0.75%.
- (c) (2.5 points) Calculate the premium trend factor to be used for 2018 using earned premium for the trending analysis and incorporating the annual trend selected in part (b).



## GIRR Spring 2022 Question 16 (LOs 5b, 5c, 5d, 5e)

#### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 27.

## **Question:**

## 16.

(5 *points*) You are calculating the 2021 earned premiums to use in ratemaking for an automobile line of business, and are given the following information:

| Vehicle       | Rating Di                | fferentials               | entials Calendar Year Earned Exposures by Gro |        |        | Group  |        |
|---------------|--------------------------|---------------------------|-----------------------------------------------|--------|--------|--------|--------|
| Rate<br>Group | Prior to<br>July 1, 2021 | Effective<br>July 1, 2021 | 2017                                          | 2018   | 2019   | 2020   | 2021   |
| 1             | 0.930                    | 0.934                     | 4,605                                         | 4,406  | 4,165  | 3,888  | 3,782  |
| 2             | 0.952                    | 0.952                     | 4,974                                         | 4,956  | 4,889  | 4,772  | 4,683  |
| 3             | 0.976                    | 0.976                     | 4,421                                         | 4,222  | 4,527  | 4,772  | 5,404  |
| 4             | 1.000                    | 1.000                     | 3,500                                         | 3,488  | 3,803  | 4,242  | 5,043  |
| 5             | 1.024                    | 1.025                     | 2,947                                         | 3,121  | 3,259  | 3,535  | 3,963  |
| 6             | 1.048                    | 1.052                     | 2,026                                         | 2,754  | 2,897  | 3,181  | 3,422  |
| 7             | 1.072                    | 1.080                     | 1,289                                         | 1,836  | 1,992  | 2,297  | 2,702  |
| 8             | 1.092                    | 1.105                     | 737                                           | 918    | 1,268  | 1,414  | 1,801  |
| Total         |                          |                           | 24,499                                        | 25,701 | 26,800 | 28,101 | 30,800 |

- The 2021 calendar year earned premiums at current rate levels are 25,256,000.
- The new rates will be effective October 1, 2022, for one year.
- Two-thirds of the policies are written for annual terms and one-third of the policies are written for six-month terms.
- All policies are written and earned evenly throughout the year.



(a) (*1 point*) Calculate the percentage increase in premiums that occurred from the rating differentials change on July 1, 2021.

*Provide the response for this part in the Excel spreadsheet.* 

(b) (*2 points*) Recommend the annual premium trend rate to use for ratemaking for this line of business. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (2 points) Calculate the calendar year 2021 earned premiums to use for ratemaking.



## GIRR Spring 2022 Question 17 (LOs 5b, 5e, 6d, 6e, 6g, 6h)

### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6d) Calculate loadings for catastrophes and large claims.
- (6e) Apply loadings for catastrophes and large claims in ratemaking.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.
- (6h) Demonstrate the use of credibility in ratemaking.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 27, 31, and 32.

## **Question:**

## 17.

(4 points) You are performing a ratemaking analysis for a homeowners book of business. As part of the analysis, you are including a loading for wildfire claims.

You are given the following information:

| Accident Year | Earned<br>Exposures | Ultimate<br>Wildfire Counts | Ultimate<br>Wildfire Claims |
|---------------|---------------------|-----------------------------|-----------------------------|
| 2015          | 11,200              |                             |                             |
| 2015          | 11,850              | 0                           | 0                           |
| 2017          | 12,500              | 1                           | 1,500,000                   |
| 2018          | 13,750              | 0                           | 0                           |
| 2019          | 15,000              | 1                           | 1,120,000                   |
| 2020          | 16,250              | 0                           | 0                           |
| 2021          | 17,500              | 1                           | 500,000                     |

- New rates are to be effective September 1, 2022, for one year, with all policies written as 12-month policies.
- The annual wildfire claim severity trend is 3%.
- The credibility assigned to wildfire claims for this homeowners book of business is 20%. The complement of credibility is assigned to the industry figures.
- A study of industry results with data as of year-end 2020 indicates a trended ultimate pure premium for wildfire claims of 50, with an average accident date of July 1, 2020.



(a) (2.5 points) Calculate the ultimate pure premium for wildfire claims to be used as a loading in the homeowners premiums.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

- The annual non-wildfire claim severity trend is 4%.
- The annual premium trend is 2.5%.
- Variable expenses are 20% of premiums.
- Fixed expenses are 70 per policy.
- Profit and contingencies are 5% of premium.
- The experience claim ratio for non-wildfire claims as of July 1, 2021, is 67%.
- The calendar year 2021 on-level earned premiums are 21,507,500.
- (b) (1.5 points) Calculate the indicated total premium for the homeowners coverage, including a loading for wildfire claims.



## GIRR Fall 2022 Question 6 (LOs 3g, 3j, 6b, 6c, 6d)

### **Learning Outcomes:**

- (3g) Estimate ultimate values using the methods cited in (3e).
- (3j) Evaluate and justify selections of ultimate values based on the methods cited in (3e).
- (6b) Identify the different types of rate regulatory approaches for general insurance.
- (6c) Describe the purpose of base rates and rating factors and explain how they are used to determine an insured's premium.
- (6d) Quantify different types of expenses required for ratemaking including expense trending procedures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 17, 18, 19, 21, 23, and 27.

## **Question:**

## **6**.

(12 points) You are estimating ultimate claims for a long-tailed line of business, and are given the following information:

| Accident | Earned    | Projected Ultimate Based on Reported<br>Claims Development Method |            |          |  |  |
|----------|-----------|-------------------------------------------------------------------|------------|----------|--|--|
| Year     | Exposures | Counts                                                            | Claims     | Severity |  |  |
| 2015     | 11,090    | 1,230                                                             | 5,348,724  | 4,349    |  |  |
| 2016     | 11,250    | 1,270                                                             | 5,926,222  | 4,666    |  |  |
| 2017     | 11,460    | 1,305                                                             | 6,528,246  | 5,002    |  |  |
| 2018     | 11,770    | 1,349                                                             | 7,227,370  | 5,358    |  |  |
| 2019     | 12,070    | 1,381                                                             | 8,120,976  | 5,881    |  |  |
| 2020     | 12,360    | 1,447                                                             | 9,136,918  | 6,314    |  |  |
| 2021     | 12,480    | 1,480                                                             | 9,678,673  | 6,540    |  |  |
| Total    | 82,480    | 9,462                                                             | 51,967,129 |          |  |  |

- The annual claim frequency trend is 1%.
- The annual claim severity trend is 6.5%.
- (a) (*3 points*) Calculate ultimate claims using the development-based frequency-severity method.



Provide the response for this part in the Excel spreadsheet.

Diagnostic testing revealed that this line of business has had strengthening of case estimates in calendar year 2021. You are provided with the following additional information:

| Accident | Reported Claims |           |           |           |           |           |           |
|----------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Year     | 12              | 24        | 36        | 48        | 60        | 72        | 84        |
| 2015     | 1,906,608       | 2,666,402 | 3,459,325 | 4,177,978 | 4,782,824 | 5,202,046 | 5,274,875 |
| 2016     | 2,023,029       | 2,921,757 | 3,795,342 | 4,577,229 | 5,158,981 | 5,763,708 |           |
| 2017     | 2,207,357       | 3,082,180 | 4,057,723 | 4,924,637 | 5,759,272 |           |           |
| 2018     | 2,389,192       | 3,427,092 | 4,397,500 | 5,558,325 |           |           |           |
| 2019     | 2,550,446       | 3,683,042 | 5,107,412 |           |           |           |           |
| 2020     | 2,695,059       | 4,364,690 |           |           |           |           |           |
| 2021     | 3,175,077       |           |           |           |           |           |           |

| Accident | Paid Claims |           |           |           |           |           |           |
|----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Year     | 12          | 24        | 36        | 48        | 60        | 72        | 84        |
| 2015     | 734,782     | 1,253,583 | 1,905,611 | 2,640,076 | 3,434,180 | 4,178,154 | 4,637,751 |
| 2016     | 767,982     | 1,372,261 | 2,087,061 | 2,927,979 | 3,704,517 | 4,546,408 |           |
| 2017     | 799,315     | 1,350,784 | 2,259,191 | 3,126,494 | 4,007,167 |           |           |
| 2018     | 899,087     | 1,635,498 | 2,443,217 | 3,379,326 |           |           |           |
| 2019     | 968,418     | 1,736,844 | 2,639,562 |           |           |           |           |
| 2020     | 1,026,656   | 1,937,498 |           |           |           |           |           |
| 2021     | 1,082,487   |           |           |           |           |           |           |

| Accident | Reported Counts |       |       |       |       |       |       |
|----------|-----------------|-------|-------|-------|-------|-------|-------|
| Year     | 12              | 24    | 36    | 48    | 60    | 72    | 84    |
| 2015     | 732             | 865   | 996   | 1,095 | 1,166 | 1,214 | 1,222 |
| 2016     | 752             | 902   | 1,023 | 1,125 | 1,200 | 1,253 |       |
| 2017     | 780             | 921   | 1,041 | 1,167 | 1,235 |       |       |
| 2018     | 804             | 961   | 1,083 | 1,201 |       |       |       |
| 2019     | 813             | 975   | 1,110 |       |       |       |       |
| 2020     | 835             | 1,024 |       |       |       |       |       |
| 2021     | 875             |       |       |       |       |       |       |



| Accident | Closed Counts |     |     |     |       |       |       |
|----------|---------------|-----|-----|-----|-------|-------|-------|
| Year     | 12            | 24  | 36  | 48  | 60    | 72    | 84    |
| 2015     | 336           | 545 | 730 | 879 | 998   | 1,094 | 1,138 |
| 2016     | 346           | 575 | 747 | 902 | 1,027 | 1,129 |       |
| 2017     | 356           | 575 | 760 | 936 | 1,056 |       |       |
| 2018     | 368           | 611 | 794 | 964 |       |       |       |
| 2019     | 369           | 618 | 807 |     |       |       |       |
| 2020     | 380           | 648 |     |     |       |       |       |
| 2021     | 400           |     |     |     |       |       |       |

(b) (2 points) Construct the reported claims triangle adjusted for the change in case adequacy.

*Provide the response for this part in the Excel spreadsheet.* 

You are provided with the following average ultimate reported severities, adjusted for the change in case adequacy:

| Accident<br>Year | Ultimate Reported<br>Severities |
|------------------|---------------------------------|
| 2015             | 4,316.59                        |
| 2016             | 4,561.67                        |
| 2017             | 4,813.61                        |
| 2018             | 5,066.25                        |
| 2019             | 5,441.62                        |
| 2020             | 5,802.31                        |
| 2021             | 5,990.39                        |

(c) (1.5 points) Recommend the revised annual claim severity trend. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

(d) (*1 point*) Explain why you might expect the answer to part (c) to be lower than the original annual severity trend of 6.5%.

*Provide the response for this part in the Excel spreadsheet.* 

(e) (0.5 points) Calculate ultimate claims using the ultimate counts provided and ultimate reported severities adjusted for the change in case adequacy.



(f) (2 points) Calculate expected claims for all accident years using the expected method and your recommended annual claim severity trend from part (c). Justify any selections.

*Provide the response for this part in the Excel spreadsheet.* 

(g) (1 point) Calculate ultimate claims for all accident years using the Bornhuetter Ferguson method.

*Provide the response for this part in the Excel spreadsheet.* 

You projected ultimate claims using several methods above.

(h) (*1 point*) Recommend the selected ultimate claims for accident year 2021 for this line of business. Justify your recommendation.



## GIRR Fall 2022 Question 14 (LOs 5b, 5c, 5d, 5e, 6e, 6g, 6h)

### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.
- (6e) Apply loadings for catastrophes and large claims in ratemaking.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.
- (6h) Demonstrate the use of credibility in ratemaking.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 26, 31, and 32.

## **Question:**

## 14.

(6 points) You are performing a ratemaking analysis of a homeowners book of business for State Q. As part of the analysis, you are reviewing loadings for catastrophes and large claims.

(a) (0.5 points) Describe one way that large claims are differentiated from catastrophe claims when insurers are estimating loadings for ratemaking purposes.

You are given the following State Q ultimate pure premium for non-hurricane weather excluding hail (referred to as weather claims below) per 100 earned house years (EHY):

| Accident<br>Year | Pure Premium<br>per 100 EHY |
|------------------|-----------------------------|
| 2010             | 5,280                       |
| 2011             | 5,770                       |
| 2012             | 6,330                       |
| 2013             | 6,200                       |
| 2014             | 6,920                       |
| 2015             | 7,140                       |
| 2016             | 7,560                       |
| 2017             | 8,300                       |
| 2018             | 8,460                       |



| Accident<br>Year | Pure Premium<br>per 100 EHY |
|------------------|-----------------------------|
| 2019             | 8,850                       |
| 2020             | 9,400                       |
| 2021             | 9,940                       |

- The new rates are to be effective August 1, 2023 for one year.
- All policies are written for 12-month policy terms.
- (b) (*1 point*) Recommend the annual pure premium trend for weather claims. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (1.5 points) Recommend the trended ultimate pure premium for weather claims per 100 EHY to use in ratemaking. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

|                  | State Q Property excluding Weather Claims |                    |                                                |                                                        |                               |                             |  |  |
|------------------|-------------------------------------------|--------------------|------------------------------------------------|--------------------------------------------------------|-------------------------------|-----------------------------|--|--|
| Accident<br>Year | Earned<br>House<br>Years                  | Earned<br>Premiums | Earned<br>Premiums at<br>Current Rate<br>Level | Trended Earned<br>Premiums at<br>Current Rate<br>Level | Trended<br>Ultimate<br>Claims | Accident<br>Year<br>Weights |  |  |
| 2019             | 16,080                                    | 10,537,200         | 11,064,120                                     | 12,545,160                                             | 7,130,200                     | 25%                         |  |  |
| 2020             | 16,560                                    | 11,330,400         | 11,606,760                                     | 12,777,120                                             | 7,449,200                     | 30%                         |  |  |
| 2021             | 16,860                                    | 11,802,000         | 11,802,000                                     | 12,613,560                                             | 6,824,400                     | 45%                         |  |  |
| Total            | 49,500                                    | 33,669,600         | 34,472,880                                     | 37,935,840                                             | 21,403,800                    | 100%                        |  |  |

- The full credibility standard is 80,000 EHY.
- The square root rule is used for partial credibility.
- The trended adjusted country-wide ultimate claim ratio (including ULAE) is 70%.
- The ULAE to claim ratio is 12%.
- The selected fixed expenses are 5% of premiums.
- The selected variable expenses are 15% of premiums.
- The selected profit and contingencies are 4% of premiums.
- (d) (*3 points*) Calculate the indicated rate level change, including a loading for weather claims.



## GIRR Fall 2022 Question 16 (LOs 5b, 5c, 5d, 5e)

### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.

## **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 27.

## **Question:**

# 16.

(4 points) You are analyzing premium trend to use in a ratemaking analysis based on the following quarterly exposure and premium data:

| Experience<br>Period Calendar | Written   | Actual<br>Written | On-Level<br>Written |
|-------------------------------|-----------|-------------------|---------------------|
| Quarter Ending                | Exposures | Premiums          | Premiums            |
| 2018-1                        | 5,229     | 2,443,276         | 2,700,678           |
| 2018-2                        | 5,354     | 2,549,138         | 2,817,692           |
| 2018-3                        | 5,568     | 2,676,306         | 2,958,258           |
| 2018-4                        | 5,754     | 2,775,206         | 3,067,577           |
| 2019-1                        | 5,931     | 2,918,640         | 3,234,297           |
| 2019-2                        | 6,065     | 2,965,409         | 3,286,125           |
| 2019-3                        | 6,327     | 3,177,321         | 3,520,955           |
| 2019-4                        | 6,450     | 3,239,327         | 3,589,668           |
| 2020-1                        | 6,697     | 3,502,765         | 3,738,994           |
| 2020-2                        | 6,904     | 3,653,803         | 3,900,218           |
| 2020-3                        | 7,119     | 3,858,738         | 4,118,974           |
| 2020-4                        | 7,224     | 3,903,207         | 4,166,442           |
| 2021-1                        | 7,520     | 4,255,243         | 4,432,677           |
| 2021-2                        | 7,709     | 4,416,103         | 4,600,245           |
| 2021-3                        | 7,920     | 4,555,392         | 4,745,342           |
| 2021-4                        | 8,205     | 4,772,726         | 4,971,738           |
| 2022-1                        | 8,422     | 5,114,877         | 5,140,873           |
| 2022-2                        | 8,757     | 5,411,129         | 5,438,630           |



- (a) (2 points) Calculate the quarterly change in average written premiums using:
  - (i) Change in quarter-to-quarter averages
  - (ii) Change in rolling 4-quarter volume-weighted averages

*Provide the response for this part in the Excel spreadsheet.* 

(b) (1 point) Recommend the annual premium trend. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

- First quarter 2022 on-level earned premiums are 5,136,000.
- New rates will be effective April 1, 2023, for one year.
- All policies are written for annual terms and are written and earned evenly throughout the year.
- (c) (*1 point*) Calculate the first quarter 2022 on-level earned premiums trended to the future rating period.



## GIRR Spring 2023 Question 5 (LOs 5b, 5c, 5d, 5e, 6g)

### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 27 and 32.

## **Question:**

# 5.

|                                     | Earned Exposures by Policy Limits |           |           |           |  |
|-------------------------------------|-----------------------------------|-----------|-----------|-----------|--|
| <b>Experience</b> Period            | 500,000                           | 1,000,000 | 1,500,000 | 2,000,000 |  |
| 2015                                | 7,553                             | 5,440     | 4,200     | 2,460     |  |
| 2016                                | 7,504                             | 5,511     | 4,320     | 2,574     |  |
| 2017                                | 7,297                             | 5,573     | 4,410     | 2,673     |  |
| 2018                                | 7,218                             | 5,536     | 4,501     | 2,806     |  |
| 2019                                | 7,091                             | 5,546     | 4,549     | 2,978     |  |
| 2020                                | 7,011                             | 5,598     | 4,675     | 3,125     |  |
| 2021                                | 6,879                             | 5,688     | 4,720     | 3,257     |  |
| 2022                                | 6,906                             | 5,685     | 4,758     | 3,403     |  |
| Current Increased<br>Limits Factors | 0.85                              | 1.00      | 1.13      | 1.24      |  |

(8 points) You are trending earned premiums for ratemaking purposes and are given the following:

(a) (2 *points*) Recommend the annual premium trend due to the shift in policy limits to use for ratemaking. Justify your recommendation.



You are given the following additional information:

- New rates are to be effective September 1, 2023 for one year.
- Premiums are written evenly throughout the year.
- Premiums are earned evenly throughout the policy term.
- Prior to January 1, 2020, all policies were written for 12-month terms.
- Since January 1, 2020, 75% of all policies have been written for 12-month terms and 25% of all policies have been written for 6-month terms.
- The annual trend due to a shift in deductibles is -0.1%
- The annual claim severity trend is 6%.
- The annual claim frequency trend is -1.2%.
- The ratio of ULAE to claims is 7%.
- The ratio of fixed expenses to premiums at current rates is 5%.
- The ratio of variable expenses to premiums is 23%.
- The ratio of profit and contingencies to premiums is 4%.

| Accident<br>Year | Earned<br>Premiums | Premium<br>On-Level Factors | Ultimate<br>Claims |
|------------------|--------------------|-----------------------------|--------------------|
| 2018             | 15,804,847         | 1.064                       | 8,703,669          |
| 2019             | 15,333,428         | 1.106                       | 9,184,011          |
| 2020             | 15,526,085         | 1.104                       | 9,602,493          |
| 2021             | 16,625,910         | 1.049                       | 10,401,614         |
| 2022             | 17,102,494         | 1.026                       | 11,309,041         |

(b) (4 points) Calculate the indicated rate level change for this line of business using a claims ratio approach. Justify any selection(s).

Provide the response for this part in the Excel spreadsheet.

(c) (0.5 points) Describe one reason why an indicated rate change using a pure premium approach may not result in the same result as part (b).

*Provide the response for this part in the Excel spreadsheet.* 

Your colleague calculated the indicated rate change for this line of business to be 6%. The company's management decided to increase rates by 3%.

(d) (*1 point*) Calculate the profit and contingencies to premium ratio implied by a 3% rate increase using your colleague's indicated rate change.



(e) (0.5 points) State two actions the company can take that could help achieve the target profit, given the 3% rate increase.



## GIRR Spring 2023 Question 8 (LOs 5a, 5b, 5e, 6c, 6d)

### **Learning Outcomes:**

- (5a) Identify and describe the influences of portfolio changes on claim frequency and severity.
- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6c) Explain the requirements for loadings for catastrophes and large claims in ratemaking.
- (6d) Calculate loadings for catastrophes and large claims.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 26, 27, and 31.

## Question:

## 8.

(4 points) You are estimating an earthquake catastrophe loading to use in a ratemaking analysis that was determined from a catastrophe model. You are given the following:

| Modeled expected earthquake claims                              | 450,000          |
|-----------------------------------------------------------------|------------------|
| Date of modeled expected claims cost level                      | July 1, 2022     |
| Date of in-force exposures reflected in catastrophe model       | February 1, 2022 |
| Calendar year 2022 trended earned premium at current rate level | 15,450,000       |
| Annual exposure trend                                           | 1%               |
| Annual claim severity trend                                     | 6%               |
| Effective date of new rates                                     | October 1, 2023  |

All policies are written for 12-month terms and new rates will be in effect for one year.

(a) (*1 point*) Explain why two trend adjustments must be made to the modeled expected earthquake claims to calculate the catastrophe loading for ratemaking.

*Provide the response for this part in the Excel spreadsheet.* 

(b) (2 points) Calculate the catastrophe loading to be used for ratemaking, as a claim ratio.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (0.5 points) Describe an additional step or approach that would increase your confidence in the estimate of expected earthquake claims.

Version 2025-1



Provide the response for this part in the Excel spreadsheet.

Claims following a catastrophe are often subject to demand surge.

(d) (0.5 points) Describe how you would consider the effect of a demand surge in the calculation of the catastrophe loading for ratemaking.



## GIRR Spring 2023 Question 14 (LOs 3g, 5c, 5d)

## **Learning Outcomes:**

- (3g) Estimate ultimate values using the methods cited in (3e).
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 16 and 26.

## Question:

# 14.

(6 points) You are estimating ultimate claims as of December 31, 2022 using the developmentbased frequency-severity method. You are given the following:

| Accident<br>Year | Earned<br>Exposures | Ultimate Counts<br>Based on<br>Development Method | Ultimate Severity<br>Based on<br>Development Method |
|------------------|---------------------|---------------------------------------------------|-----------------------------------------------------|
| 2017             | 11,434              | 1,235                                             | 4,104                                               |
| 2018             | 11,635              | 1,247                                             | 4,384                                               |
| 2019             | 11,681              | 1,249                                             | 4,751                                               |
| 2020             | 11,821              | 1,260                                             | 5,066                                               |
| 2021             | 12,044              | 1,256                                             | 5,531                                               |
| 2022             | 12,240              | 1,301                                             | 5,897                                               |

- The annual claim severity trend is 7.5%.
- The earned exposures are not inflation sensitive.
- (a) (1.5 points) Recommend an annual claim frequency trend to use for the development-based frequency-severity method. Justify your recommendation.

Provide the response for this part in the Excel spreadsheet.

(b) (3.5 points) Estimate ultimate claims for all accident years using the development-based frequency-severity method.

Provide the response for this part in the Excel spreadsheet.

Version 2025-1



There are times when projections from the frequency-severity method are preferred over the development method when used as inputs to the expected method.

(c) (*1 point*) Describe two scenarios when projections from the frequency-severity method are preferred.



## GIRR Fall 2023 Question 3 (LOs 5b, 5e, 6d)

#### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6d) Calculate loadings for catastrophes and large claims.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 26 and 31.

## Question:

# 3.

Provide the response for this question in the Excel spreadsheet.

(4 points) You are determining a loading for large claims on a homeowners book of business for a ratemaking exercise.

(a) (0.5 points) State two reasons for using a large claim loading approach when estimating ultimate claims at total limits for ratemaking.

You are given the following:

| Accident<br>Year | Selected Ultimate<br>Claims at 500,000<br>Limit | Selected Ultimate<br>Claims at Total<br>Limits |
|------------------|-------------------------------------------------|------------------------------------------------|
| 2019             | 9,850,000                                       | 12,108,000                                     |
| 2020             | 10,365,000                                      | 12,658,000                                     |
| 2021             | 11,275,000                                      | 15,334,000                                     |
| 2022             | 12,385,000                                      | 14,357,000                                     |

- New rates are effective October 1, 2023 for one year.
- All policies are written for 6-month policy terms.
- The annual severity trend at 500,000 limit is 5%.
- The annual severity trend at total limits is 7%.
- The indicated large claims loading for 500,000 to total limits is 1.28 for the prospective rating period.
- The experience for this homeowners book of business is considered fully credible.



- (b) (2 points) Calculate the large claim loadings at 500,000 limit, adjusted to the cost level for each accident year.
- (c) (0.5 points) Calculate ultimate claims at total limits for each accident year using selected ultimate claims at a 500,000 limit and the large claim loadings from part (b).
- (d) (*1 point*) Describe how the calculations in part (b) are affected when the experience is less than fully credible.



## GIRR Fall 2023 Question 6 (LOs 5c)

#### **Learning Outcomes:**

(5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 27.

### **Question:**

## 6.

(3 points) You are conducting an exposure and premium trend analysis for ratemaking purposes.

(a) (0.5 *points*) Describe why you would adjust actual historical premiums to current rate levels before analyzing premium trend.

### ANSWER:

(b) (0.5 points) Describe an advantage of using written premiums instead of earned premiums for a premium trend analysis.

ANSWER:

(c) (0.5 points) Describe why an adjustment for inflation is required if premiums are based on inflation-sensitive exposures.

ANSWER:

(d) (0.5 points) Describe why an increasing proportion of insureds replacing their old vehicles with new vehicles might affect premium trend factors.

ANSWER:

(e) (*1 point*) Describe how a premium trend analysis for an insurer's book of business is different from a premium trend analysis for a self-insurer.

ANSWER:



## GIRR Fall 2023 Question 8 (LOs 3g, 5c, 5d, 5e)

### **Learning Outcomes:**

- (3g) Estimate ultimate values using the methods cited in (3e).
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 16 and 26.

## Question:

## 8.

Provide the response for this question in the Excel spreadsheet.

(4 points) The two most common models for determining trend rates are linear and exponential.

(a) (0.5 points) Explain why a linear trend model may not be appropriate when trend is decreasing.

You are given the following:

| Accident<br>Year | Earned<br>Exposures | Ultimate<br>Counts | Indicated Claim<br>Frequency |
|------------------|---------------------|--------------------|------------------------------|
| 2016             | 15,859              | 1,454              | 9.17%                        |
| 2017             | 16,140              | 1,452              | 9.00%                        |
| 2018             | 16,265              | 1,457              | 8.96%                        |
| 2019             | 16,319              | 1,453              | 8.90%                        |
| 2020             | 16,536              | 1,442              | 8.72%                        |
| 2021             | 16,928              | 1,464              | 8.65%                        |
| 2022             | 16,842              | 1,475              | 8.76%                        |

| Indicated annual trend, using an exponential model |        |  |
|----------------------------------------------------|--------|--|
| All years –0.86%                                   |        |  |
| AY2017-AY2022                                      | -0.74% |  |
| AY2016-AY2021                                      | -1.11% |  |



(b) (0.5 points) Recommend an annual claim frequency trend to use for this line of business. Justify your recommendation.

You are also given the following:

| Accident<br>Year | Ultimate<br>Severity |
|------------------|----------------------|
| 2016             | 3,750                |
| 2017             | 3,993                |
| 2018             | 4,230                |
| 2019             | 4,489                |
| 2020             | 4,679                |
| 2021             | 5,048                |
| 2022             | 5,409                |

- The annual severity trend is 6.0%.
- Ultimate counts and ultimate severity were determined based on the development method.
- (c) (*3 points*) Calculate projected ultimate claims using the development-based frequencyseverity method and your recommended annual claim frequency trend.



## GIRR Fall 2023 Question 11 (LOs 5b, 5c, 5d, 5e, 6a)

#### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.
- (6a) Quantify different types of expenses required for ratemaking including expense trending procedures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 27 and 30.

## **Question:**

## 11.

Provide the response for this question in the Excel spreadsheet.

(5 points) You are analyzing expenses for ratemaking. The trend in fixed expenses is often analyzed separately from the trend in average premiums.

(a) (0.5 *points*) Identify why a separate trending procedure for fixed expenses may not be required when analyzed on a per-exposure basis.

You are given the following:

| Calendar<br>Year | Fixed<br>Expenses | Earned<br>Premiums | Earned Premiums<br>at Current Rates |
|------------------|-------------------|--------------------|-------------------------------------|
| 2016             | 461,512           | 5,177,046          | 6,750,220                           |
| 2017             | 493,686           | 5,615,887          | 7,026,059                           |
| 2018             | 530,358           | 6,172,433          | 7,435,117                           |
| 2019             | 571,399           | 6,749,414          | 7,835,156                           |
| 2020             | 622,827           | 7,607,009          | 8,295,015                           |
| 2021             | 665,497           | 8,102,719          | 8,667,071                           |
| 2022             | 725,652           | 8,760,790          | 9,164,015                           |

- New rates are effective November 1, 2023 for one year.
- All policies are written for 12-month policy terms.



- Premiums are written evenly throughout the year.
- Premiums are earned and fixed expenses are incurred evenly throughout the policy term.
- (b) (2 points) Recommend an annual fixed expense trend. Justify your recommendation.
- (c) (2.5 *points*) Recommend a fixed expense ratio to be used in ratemaking. Justify your recommendation.



## GIRR Fall 2023 Question 12 (LOs 5b, 5c, 5d, 5e, 6g, 6h)

### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.
- (6h) Demonstrate the use of credibility in ratemaking.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 26 and 32.

Actuarial Standards of Practice, Actuarial Standards Board of the American Academy of Actuaries, No. 25, Credibility Procedures, 2013.

### **Question:**

## 12.

## Provide the response for this question in the Excel spreadsheet.

(6 points) You are conducting a ratemaking analysis and are given the following:

| Accident<br>Year | Earned<br>Exposures | Earned Premiums<br>at Current Rate<br>Level | Ultimate<br>Counts | Ultimate<br>Claims |
|------------------|---------------------|---------------------------------------------|--------------------|--------------------|
| 2018             | 10,146              | 9,400,897                                   | 862                | 13,085,953         |
| 2019             | 10,127              | 9,537,898                                   | 869                | 14,011,147         |
| 2020             | 10,298              | 9,901,002                                   | 875                | 14,968,858         |
| 2021             | 10,291              | 10,263,291                                  | 852                | 15,499,745         |
| 2022             | 10,573              | 10,713,349                                  | 883                | 18,068,228         |

- The historical annual claim frequency trend was -1.0%.
- The annual claim frequency trend is expected to increase to 1.0% for all accidents occurring after December 31, 2022.
- The historical annual claim severity trend was 6.0% and is not expected to change in the future.
- The new rates are effective March 1, 2024 for one year.



- All policies are written for 12-month policy terms.
- The full credibility standard is 4,654 ultimate counts.
- The square root rule is used for partial credibility.
- (a) (2 points) Calculate the trended pure premiums for each accident year.
- (b) (1 point) Recommend a trended pure premium. Justify your recommendation.

You are also given the following:

- The complement of credibility is derived using the average pure premium underlying the current rates adjusted to the cost level of the forecast period of the new rates.
- The current rates are based on the prior ratemaking analysis that was applied to policies effective July 1, 2022 through June 30, 2023, with average pure premium of 1,700.
- (c) (*1 point*) Calculate the pure premium to use for the complement of credibility.

You are also given the following:

- Fixed expenses per exposure are 125.
- The ratio of ULAE to claims is 4%.
- The ratio of variable expenses to premiums is 18%.
- The ratio of profit and contingencies to premiums is 5%.
- (d) (1.5 points) Calculate the credibility-weighted indicated rate.

An alternative for the complement of credibility is to use a pure premium based on industry experience.

(e) (0.5 points) Identify one adjustment that is necessary when relying on a complement of credibility that is a pure premium based on industry experience.



## GIRR Spring 2024 Question 3 (LOs 5b, 5c, 5e)

#### Learning Outcomes:

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5e) Calculate trend factors for claims and exposures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 27.

### **Question:**

# 3.

Provide the response for this question in the Excel spreadsheet.

(4 points) You are analyzing premium trend on a large book of business for a ratemaking exercise.

(a) (0.5 points) Explain the purpose of quantifying the effect of shifts in the mix of exposures and rating characteristics on the premium during the experience period.

Based on an analysis of the historical premium for this book of business, the annual premium trend has been 1.5% prior to January 1, 2024. You are expecting a significant change in the economic environment and have therefore selected an annual trend of 3.0% for all policies written on or after January 1, 2024. All policies are six-month policies, written evenly throughout each year. The new rates will be in effect starting October 1, 2024 for one year.

- (b) (1.5 points) Calculate the 2020 premium trend factor to be used to adjust 2020 earned premiums for the ratemaking exercise.
- (c) (*1 point*) Explain how the premium trend factors would be affected by the following:
  - (i) An increasing proportion of insureds choosing a lower policy limit at the beginning of 2024
  - (ii) An increasing proportion of insureds choosing a higher deductible at the beginning of 2024
- (d) (*1 point*) Describe why the trending periods would be different in the part (b) calculation if this trending analysis is done for a self-insurer.



## GIRR Spring 2024 Question 5 (LOs 1d, 1f, 3g, and 3j)

#### **Learning Outcomes:**

- (2d) Adjust historical earned premiums to current rate levels.
- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6f) Explain the requirements for loadings for catastrophes and large claims in ratemaking.
- (6g) Calculate loadings for catastrophes and large claims.
- (6h) Apply loadings for catastrophes and large claims in ratemaking.
- (6j) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.
- (6k) Demonstrate the use of credibility in ratemaking.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13, 26, 31, and 32.

#### **Question:**

## 5.

Provide the response for this question in the Excel spreadsheet.

(*11 points*) You are conducting a ratemaking analysis for a line of business in state S with the following information:

- The new rates are to be effective September 1, 2024, through August 31, 2025.
- All policies are written for 6-month policy terms.
- The annual frequency trend is -1%.
- The annual severity trend is 5%.

You are also given the following state S claims data for non-hurricane weather excluding hail:

|                  | Ultimate                                      |          |  |
|------------------|-----------------------------------------------|----------|--|
| Accident<br>Year | Frequency per 100 earned<br>house years (EHY) | Severity |  |
| 2014             | 2.02                                          | 4,100    |  |
| 2015             | 0.39                                          | 3,500    |  |
| 2016             | 1.99                                          | 2,900    |  |
| 2017             | 0.10                                          | 4,400    |  |
| 2018             | 1.99                                          | 2,800    |  |
| 2019             | 0.80                                          | 4,200    |  |



|                  | Ultimate                                      |          |  |
|------------------|-----------------------------------------------|----------|--|
| Accident<br>Year | Frequency per 100 earned<br>house years (EHY) | Severity |  |
| 2020             | 0.63                                          | 2,600    |  |
| 2021             | 2.73                                          | 3,600    |  |
| 2022             | 0.56                                          | 2,100    |  |
| 2023             | 1.69                                          | 3,100    |  |

- (a) (2 *points*) Calculate the trended ultimate non-hurricane weather excluding hail pure premium per 100 EHY for all years.
- (b) (0.5 points) Recommend the trended ultimate non-hurricane weather excluding hail pure premium per 100 EHY to use in determining a weather loading. Justify your recommendation.

You are given the following additional information:

- Calendar year 2023 earned premiums at current rate level are 13,089,711.
- Calendar year 2023 EHY are 17,931.
- State S is part of region R.
- The trended ultimate pure premium per 100 EHY for region R is 4,000.
- The credibility that relates to the non-hurricane weather excluding hail loading for state S is 70%.
- (c) (*1 point*) Calculate the non-hurricane weather excluding hail loading percentage to use for ratemaking.

Actuaries can have flexibility in choosing the number of years to include in the experience period for ratemaking purposes.

(d) (*1 point*) Identify two considerations when choosing the number of years and/or the weights to assign to each of the years.



| Accident<br>Year | Earned<br>Exposures | Ultimate<br>Counts | Historical Earned<br>Premiums | Ultimate<br>Claims |
|------------------|---------------------|--------------------|-------------------------------|--------------------|
| 2019             | 20,675              | 1,070              | 13,510,549                    | 8,709,600          |
| 2020             | 19,937              | 1,075              | 13,268,660                    | 8,673,608          |
| 2021             | 17,061              | 1,074              | 11,739,370                    | 7,919,295          |
| 2022             | 17,992              | 1,141              | 12,638,750                    | 8,605,528          |
| 2023             | 17,931              | 1,087              | 13,089,711                    | 9,489,317          |

You are given the following data:

The full credibility standard is 3,654 ultimate counts.

- (e) (*1 point*) Recommend the number of years to include when estimating the weighted average trended claim ratio for the indicated rate change. Justify your recommendation.
- (f) (*1 point*) Recommend the weights to assign to each year when estimating the weighted average trended claim ratio for the indicated rate change. Justify your recommendation.

You are given the following additional information:

- Rate change history:
  - $\circ$  A rate change of +3% was effective July 1, 2020
  - $\circ$  A rate change of +4% was effective July 1, 2022
- Premiums are written and earned evenly throughout the year.
- The annual premium trend is 0%.
- The ratio of ULAE to claims is 5%.
- The ratio of fixed expenses to premiums at current rates is 3%.
- The ratio of variable expenses to premiums is 12%.
- The ratio of profit and contingencies to premiums is 4%.
- (g) (4.5 points) Calculate the indicated rate change for this line of business.



## GIRR Spring 2024 Question 12 (LOs 3g, 5c, 5d)

#### **Learning Outcomes:**

- (3g) Estimate ultimate values using the methods cited in (3e).
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 16 and 26.

## Question:

## 12.

Provide the response for this question in the Excel spreadsheet.

(7 *points*) You are estimating ultimate claims for a line of business as of December 31, 2023 using the development-based frequency-severity method.

(a) (*1 point*) Describe two options to consider when experience is not fully credible for trending.

You are given the following additional information:

| Accident | Earned    | Projected Ultima     | te Counts Based on     |
|----------|-----------|----------------------|------------------------|
| Year     | Exposures | <b>Closed Counts</b> | <b>Reported Counts</b> |
| 2018     | 16,451    | 1,641                | 1,485                  |
| 2019     | 16,557    | 1,786                | 1,492                  |
| 2020     | 16,815    | 1,885                | 1,499                  |
| 2021     | 16,915    | 2,000                | 1,503                  |
| 2022     | 17,147    | 1,977                | 1,474                  |
| 2023     | 17,461    | 1,990                | 1,491                  |

- This line of business was stable prior to 2023, when new claims processing and settlement policies were introduced in 2023.
- Ultimate estimates shown above are based on simple development methods.
- (b) (1.5 points) Recommend the annual claim frequency trend to use for this line of business. Justify your recommendation.



(c) (1.5 points) Calculate the ultimate counts using the development-based frequency-severity method with your selected frequency trend from part (b). Justify any selections.

|               | Projected Ultimate Severity Based on |                          |  |
|---------------|--------------------------------------|--------------------------|--|
| Accident Year | <b>Paid Severity</b>                 | <b>Reported Severity</b> |  |
| 2018          | 4,390                                | 4,719                    |  |
| 2019          | 4,602                                | 5,342                    |  |
| 2020          | 4,789                                | 5,618                    |  |
| 2021          | 5,085                                | 5,857                    |  |
| 2022          | 5,196                                | 5,923                    |  |
| 2023          | 5,456                                | 6,168                    |  |

You are given the following additional information:

The annual claim severity trend is 5%. The selected trend rate should recognize economic trend.

- (d) (0.5 points) State one other influence that the trend rate should also recognize.
- (e) (2.5 *points*) Calculate the ultimate claims using the development-based frequency-severity method. Justify any selections.



## GIRR Fall 2024 Question 8 (LOs 5e)

#### **Learning Outcomes:**

(5e) Calculate trend factors for claims and exposures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 26.

### **Question:**

## 8.

## Provide the response for this question in the Excel spreadsheet.

(4 points) You are estimating claim trend by fitting historical data using exponential regression.

- (a) (0.5 points) Describe one reason for relying on a longer period of time when trending a long-tailed line of business.
- (b) (0.5 points) Provide an example where a longer period of time may not be appropriate for trending a long-tailed line of business.
- (c) (*1 point*) State two considerations when selecting which data points to include in trending procedures.

You are given the following for a ratemaking exercise:

- 40% of all written policies are expected to be twelve-month policies.
- 60% of all written policies are expected to be six-month policies.
- The accident year 2022 trend period for 12-month policies is 45 months.
- The exponential regression best fit lines, where *t* is half years:
  - Claim severity:  $s = 42,000e^{0.045t}$
  - Claim frequency:  $f = 0.015e^{-0.007t}$
- (d) (2 points) Calculate the pure premium trend factor for accident year 2022.



## GIRR Fall 2024 Question 11 (LOs 2d, 5b, 5e)

#### **Learning Outcomes:**

- (2d) Adjust historical earned premiums to current rate levels.
- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13 and 27.

### Question:

## 11.

## Provide the response for this question in the Excel spreadsheet.

(5 *points*) Your company started writing a new line of business on March 1, 2022. You are conducting a ratemaking analysis for this line of business and are given the following:

| Historical Rate Changes Since March 1, 2022 |             |  |  |
|---------------------------------------------|-------------|--|--|
| Effective Date of Rate                      |             |  |  |
| Change                                      | Rate Change |  |  |
| September 1, 2022                           | 5%          |  |  |
| January 1, 2024                             | 7%          |  |  |

- The first policy was issued March 1, 2022.
- Premiums are written evenly throughout the year.
- Premiums are earned evenly throughout the policy term.
- All policies were written for 12-month terms.
- There have been no rate changes since January 1, 2024.
- New rates will be effective April 1, 2025, for one year.
- The annual premium trend is -0.5%.

You are adjusting historical earned premiums to the future rating period.

(a) (3 points) Calculate the on-level premium factors for calendar year 2022 and 2023.

(b) (2 points) Calculate premium trend factors for calendar year 2022 and 2023.



## GI 101 – LEARNING OBJECTIVE 6

6. Topic: Ratemaking

The candidate will understand how to apply the fundamental ratemaking techniques of general insurance.



## GIRR Fall 2020 Question 5 (LOs 6a)

#### Learning Outcomes:

(6a) Quantify different types of expenses required for ratemaking including expense trending procedures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 30.

## Question:

**5.** (*4 points*) You are conducting an expense analysis to be used in ratemaking for a line of business, and are given the following information:

| Calendar<br>Year | Earned<br>Premiums | Earned Premiums at<br>Current Rate Level | Fixed<br>Expenses |
|------------------|--------------------|------------------------------------------|-------------------|
| 2014             | 4,526,480          | 5,850,000                                | 172,580           |
| 2015             | 4,830,080          | 6,166,130                                | 186,220           |
| 2016             | 5,279,580          | 6,451,780                                | 200,650           |
| 2017             | 5,542,320          | 6,658,360                                | 214,400           |
| 2018             | 6,139,740          | 6,901,520                                | 231,200           |
| 2019             | 6,873,650          | 7,231,270                                | 253,090           |

This line of business has historically used an annual fixed expense trend of 3%, which has been based on a publicly-available cost index.

(a) (*1 point*) Calculate the historical trend in fixed expenses.

*The response for part (a) is to be provided in the Excel spreadsheet.* 

(b) (0.5 points) Assess the reasonableness of using the publicly-available cost index for this line of business in comparison to using the historical trend in fixed expenses.

ANSWER:

(c) (0.5 points) Recommend the annual fixed expense trend. Justify your recommendation.



ANSWER:

You are given the following additional information:

- New rates will be effective April 1, 2021 for one year.
- All policies are written as 12-month policies.
- The annual premium trend is 0%.
- (d) (2 points) Calculate the fixed expense ratio to be used in ratemaking, using a simple average from calendar years 2017, 2018 and 2019.

*The response for part (d) is to be provided in the Excel spreadsheet.* 



## GIRR Fall 2020 Question 13 (LOs 6c, 6d)

#### **Learning Outcomes:**

- (6c) Explain the requirements for loadings for catastrophes and large claims in ratemaking.
- (6d) Calculate loadings for catastrophes and large claims.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 30.

## **Question:**

- **13.** (5 points) You are determining a loading for large claims on a homeowners line of business.
- (a) (0.5 points) Explain why actuaries typically conduct separate analyses of property and liability claims for homeowners insurance when determining a loading for large claims.

ANSWER:

You are estimating ultimate property claims to be used in a ratemaking analysis for State Q, and are given the following information:

| Accident<br>Year | Selected Ultimate<br>Claims at 1<br>Million Limit<br>(000) | Selected Ultimate<br>Claims at Total<br>Limits (000) |
|------------------|------------------------------------------------------------|------------------------------------------------------|
| 2016             | 7,420                                                      | 7,950                                                |
| 2017             | 7,800                                                      | 8,150                                                |
| 2018             | 8,500                                                      | 8,690                                                |
| 2019             | 9,150                                                      | 9,320                                                |

| Selections                 | 1 Million Limit | <b>Total Limits</b> |
|----------------------------|-----------------|---------------------|
| State Q Severity Trend     | 4.0%            | 5.0%                |
| State Q Credibility        | 60%             | 50%                 |
| Countrywide Severity Trend | 5.0%            | 6.0%                |

- The claims experience of State Q is not fully credible for calculating trend.
- Rates are effective April 1, 2021 for one year.
- All policies are written for 12-month policy terms.



You are given the following loadings for large claims for the 500,000 to 1 million limit:

| Accident<br>Year | 500,000 to<br>1 Million Limit |
|------------------|-------------------------------|
| 2016             | 1.182                         |
| 2017             | 1.185                         |
| 2018             | 1.270                         |
| 2019             | 1.285                         |

(b) (*3 points*) Calculate the loadings for 500,000 to total limits for each accident year.

The response for part (b) is to be provided in the Excel spreadsheet.

(c) (0.5 points) Recommend a loading for 500,000 to total limits for ratemaking purposes. Justify your recommendation.

ANSWER:

(d) (*1 point*) Explain why severity trend is used for the part (b) calculation instead of pure premium trend.

ANSWER:



## GIRR Fall 2020 Question 16 (LOs 2d, 5b, 5e, 6g)

#### **Learning Outcomes:**

- (2d) Adjust historical earned premiums to current rate levels.
- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13, 26, 27, and 32.

## Question:

**16.** (*7 points*) You are conducting a ratemaking analysis for an automobile line of business and are given the following information:

| Rate Change History |          |  |
|---------------------|----------|--|
| Effective Date Rate |          |  |
| of Rate Change      | Change % |  |
| July 1, 2015        | 8.0%     |  |
| January 1, 2017     | 10.0%    |  |
| January 1, 2019     | 5.0%     |  |

- Premiums are written and earned evenly throughout the year.
- All policies are written for 12-month policy terms.
- In addition to the above rate changes, there was a regulation change where all premiums in force on July 1, 2017 were required to be reduced by 20%.
- (a) (*2 points*) Calculate premium on-level factors for accident years 2015-2019 to use for ratemaking purposes.

*The response for part (a) is to be provided in the Excel spreadsheet.* 

You are given the following additional information:



| Accident<br>Year | Earned<br>Premiums | Ultimate<br>Claims |
|------------------|--------------------|--------------------|
| 2015             | 11,755,570         | 8,130,150          |
| 2016             | 11,864,520         | 7,970,110          |
| 2017             | 12,406,530         | 7,781,380          |
| 2018             | 12,492,860         | 8,001,680          |
| 2019             | 12,394,530         | 7,995,960          |

- The annual premium trend is 1%.
- The annual pure premium trend is 4%.
- The new rates will be effective November 1, 2020 through October 31, 2021.
- The historical data is considered fully credible for ratemaking purposes.
- The regulation change which reduced premiums also reduced claim costs by 20% for all accidents occurring on or after July 1, 2017.
- (b) (2.5 points) Calculate the trended on-level claim ratios for each accident year.

The response for part (b) is to be provided in the Excel spreadsheet.

(c) (*1 point*) Recommend a trended claim ratio to use for ratemaking. Justify your recommendation.

*The response for part (c) is to be provided in the Excel spreadsheet.* 

You are given the following additional information:

- The ratio of ULAE to claims is 10%.
- The ratio of fixed expenses to premiums at current rates is 6%.
- The ratio of variable expenses to premiums is 19%.
- The ratio of profit and contingencies to premiums is 5%.
- (d) (0.5 points) Calculate the indicated rate change.

The response for part (d) is to be provided in the Excel spreadsheet.

The purpose of the legislative change effective July 1, 2017 was to reduce increases in premiums arising from poor industry claims experience. As a result, management questions your required increase of 5% in 2019.

(e) (*1 point*) Explain why an indicated rate increase of 5% is not necessarily indicative of deteriorating experience.

ANSWER:



## GIRR Spring 2021 Question 12 (LOs 5b, 5c, 5d, 5e, 6g, 6h)

#### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.
- (6h) Demonstrate the use of credibility in ratemaking.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 27 and 32.

### **Question:**

## 12.

| Calendar<br>Year | Written<br>Exposures | Earned<br>Exposures | On-Level Written<br>Premiums | On-Level Earned<br>Premiums |
|------------------|----------------------|---------------------|------------------------------|-----------------------------|
| 2011             | 12,150               | 12,082              | 6,561,000                    | 6,427,624                   |
| 2012             | 12,393               | 12,332              | 6,772,527                    | 6,652,473                   |
| 2013             | 12,889               | 12,765              | 7,123,878                    | 6,979,015                   |
| 2014             | 13,920               | 13,662              | 7,795,279                    | 7,565,041                   |
| 2015             | 14,616               | 14,442              | 8,363,476                    | 8,175,282                   |
| 2016             | 14,762               | 14,726              | 8,555,141                    | 8,441,915                   |
| 2017             | 14,319               | 14,430              | 8,409,605                    | 8,378,940                   |
| 2018             | 13,460               | 13,675              | 7,990,486                    | 8,034,240                   |
| 2019             | 13,191               | 13,258              | 7,928,680                    | 7,888,949                   |
| 2020             | 13,851               | 13,686              | 8,428,619                    | 8,248,676                   |

(6 points) You are given the following information:

(a) (2 points) Recommend the annual premium trend to use for ratemaking. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 



You are given the following additional information:

- New rates will be effective August 1, 2021 for six months.
- All policies are written as 12-month policies.

| Accident | Trended                |  |
|----------|------------------------|--|
| Year     | <b>Ultimate Claims</b> |  |
| 2016     | 6,837,098              |  |
| 2017     | 6,467,985              |  |
| 2018     | 5,847,762              |  |
| 2019     | 5,734,244              |  |
| 2020     | 5,674,781              |  |

(b) (1.5 points) Calculate the trended claim ratio for each accident year.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (0.5 points) Recommend a trended claim ratio to use for ratemaking. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

- The annual pure premium trend is 5%.
- The complement of credibility is derived using the data from the last ratemaking analysis.
- The last ratemaking analysis was for policies effective January 1, 2021 through June 30, 2021, where
  - $\circ$  the indicated rate change was 4%,
  - the approved rate change was 2%, and
  - the permissible claim ratio was 55%.
- (d) (*1 point*) Calculate the claim ratio to use for the complement of credibility.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

- The ratio of fixed expenses to premiums at current rates including ULAE is 15%.
- The ratio of variable expenses to premiums is 11%.
- The ratio of profit and contingencies to premiums is 4%.
- The credibility assigned to the experience claim ratio is 77%.



(e) (*1 point*) Calculate the indicated rate change.

*Provide the response for this part in the Excel spreadsheet.* 



## GIRR Spring 2021 Question 16 (LOs 6c, 6d)

#### **Learning Outcomes:**

- (6c) Explain the requirements for loadings for catastrophes and large claims in ratemaking.
- (6d) Calculate loadings for catastrophes and large claims.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 26 and 31.

## **Question:**

## 16.

(5 *points*) You are estimating ultimate property claims in State X for ratemaking purposes using a large claims loading approach.

You are given the following information:

| Accident |         | Selected Ultimate Claims at<br>Alternative Limits (000) |                     |  |
|----------|---------|---------------------------------------------------------|---------------------|--|
| Year     | 250,000 | 500,000                                                 | <b>Total Limits</b> |  |
| 2013     | 3,990   | 4,560                                                   | 4,560               |  |
| 2014     | 3,988   | 3,988                                                   | 3,988               |  |
| 2015     | 3,846   | 5,198                                                   | 5,370               |  |
| 2016     | 4,301   | 6,367                                                   | 6,829               |  |
| 2017     | 4,545   | 6,489                                                   | 6,489               |  |
| 2018     | 4,256   | 4,256                                                   | 4,256               |  |
| 2019     | 4,840   | 7,164                                                   | 7,779               |  |
| 2020     | 5,038   | 7,349                                                   | 7,349               |  |

| Selected Severity Trend at<br>Alternative Limits (000) |                              |  |  |
|--------------------------------------------------------|------------------------------|--|--|
| 250,000                                                | 250,000 500,000 Total Limits |  |  |
| 4.5% 5.0% 5.7%                                         |                              |  |  |

- The new rates are to be effective February 1, 2022 through January 31, 2023.
- All policies are written for 12-month policy terms.



You are given the following loadings for large claims in State X, which were calculated using experience from accident years 2013 to 2020:

|                      | Loadings for Large Claims                                         |       |       |  |
|----------------------|-------------------------------------------------------------------|-------|-------|--|
|                      | 250,000 to 250,000 to 500,000 to 500,000 Total Limits Total Limit |       |       |  |
| All-years<br>average | 1.323                                                             | 1.404 | 1.059 |  |

(a) (2 points) Demonstrate that the all-years simple average of the loadings for large claims were calculated correctly in the table above.

*Provide the response for this part in the Excel spreadsheet.* 

A credibility procedure was used to select the State X loadings for large claims at a 250,000 limit and a 500,000 limit using the following assumptions:

- State X credibility is 50% for claims from 250,000 to 500,000, and 20% for claims from 500,000 to total limits.
- The countrywide loadings for large claims are 1.53 for claims from 250,000 to 500,000, and 1.05 for claims from 500,000 to total limits.
- The loading for large claims from 250,000 to total limits is derived from the loadings for large claims from 250,000 to 500,000, and 500,000 to total limits.
- (b) (2 points) Calculate the ultimate claims at total limits for each accident year from 2016 to 2020, using selected ultimate claims at the following limits:
  - (i) 250,000
  - (ii) 500,000

Provide the response for this part in the Excel spreadsheet.

(c) (*1 point*) Explain why a loading for catastrophe claims might still be appropriate for the State X property business ratemaking despite including a loading for large claims.

ANSWER:



## GIRR Spring 2021 Question 18 (LOs 6a)

#### Learning Outcomes:

(6a) Quantify different types of expenses required for ratemaking including expense trending procedures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 30.

## Question:

## 18.

(4 points) You are given the following information for a line of business:

| Calendar<br>Year | General and<br>Other<br>Acquisition<br>Expenses | Commission<br>Expenses | Premium<br>Taxes,<br>Licenses<br>and Fees | Direct<br>Written<br>Premiums | Direct<br>Earned<br>Premiums |
|------------------|-------------------------------------------------|------------------------|-------------------------------------------|-------------------------------|------------------------------|
| 2017             | 232,300                                         | 290,400                | 67,760                                    | 2,420,000                     | 2,370,000                    |
| 2018             | 249,500                                         | 303,600                | 70,840                                    | 2,530,000                     | 2,470,000                    |
| 2019             | 253,200                                         | 320,400                | 74,760                                    | 2,670,000                     | 2,610,000                    |
| 2020             | 258,500                                         | 352,800                | 82,320                                    | 2,940,000                     | 2,810,000                    |

- Calendar year 2021 budgeted earned premiums are 2,936,450.
- Calendar year 2021 budgeted general and other acquisition expenses are 293,645.
- The percent of general and other acquisition expenses that are fixed is 30%.
- (a) (*3 points*) Recommend a fixed and a variable expense ratio to use for ratemaking. Justify your recommendation.

Provide the response for this part in the Excel spreadsheet.

(b) (0.5 points) Identify a potential distortion to a ratemaking analysis when selecting a fixed expense percentage that is applied to a projected average premium.

ANSWER:

(c) (0.5 points) Recommend a solution to the potential distortion identified in part (b).

ANSWER:

Version 2025-1



## GIRR Fall 2021 Question 4 (LOs 5b, 5e, 6d, 6e, 6g)

#### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6d) Calculate loadings for catastrophes and large claims.
- (6e) Apply loadings for catastrophes and large claims in ratemaking.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 27, 31, and 32.

## **Question:**

## 4.

(4 points) XYZ insurer is thinking of offering an earthquake endorsement to its basic homeowners policy. You are given the following information:

- Using July 1, 2020 in-force policies, expected claims from the earthquake catastrophe model are 225,000 based on an October 1, 2020 cost level.
- Earned house years for accident year 2020 are 15,000.
- The annual exposure trend is 3.5%.
- The annual severity trend is 7%.
- New rates are to be effective July 1, 2022 for one year with all policies written as 12month policies.
- (a) (2 points) Calculate the pure premium for the earthquake endorsement.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information for the earthquake endorsement:

- The fixed cost per policy is 5.
- The variable expense to premium ratio is 10%.
- The risk load is 25% of premium.
- (b) (0.5 points) Calculate the premium for the earthquake endorsement.

Provide the response for this part in the Excel spreadsheet.

Version 2025-1



|               | Basic Homeowners<br>(excluding optional earthquake endorsement) |           |  |
|---------------|-----------------------------------------------------------------|-----------|--|
|               | On Level Earned                                                 |           |  |
| Accident Year | Premium Ultimate Claims                                         |           |  |
| 2018          | 15,500,000                                                      | 9,000,000 |  |
| 2019          | 16,250,000                                                      | 8,000,000 |  |
| 2020          | 17,000,000                                                      | 8,200,000 |  |

You are given the following information for the basic homeowners coverage:

- The current rate level is 1,050.
- The annual premium trend is 2%.
- The permissible claim ratio is 57%.
- (c) (*1 point*) Calculate the indicated rate for the basic homeowners coverage. Justify any selections.

*Provide the response for this part in the Excel spreadsheet.* 

Since the earthquake coverage is an optional endorsement, management proposes that there should not be any fixed and variable expense charged to this optional coverage.

(d) (0.5 points) State whether you agree with management's proposal. Justify your response.

Provide the response for this part in the Excel spreadsheet.



## GIRR Fall 2021 Question 15 (LOs 6g)

#### **Learning Outcomes:**

(6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 32.

## **Question:**

## 15.

(5 *points*) You are conducting a ratemaking analysis for a line of business for new rates to be effective January 1, 2022, and are given the following information:

| Calendar year 2020 earned premium                           | 8,100,000 |
|-------------------------------------------------------------|-----------|
| Calendar year 2020 earned exposures                         | 11,000    |
| Premium on-level factor                                     | 1.030     |
| Premium trend factor                                        | 1.007     |
| Experience claims ratio trended to the future rating period | 78%       |
| ULAE as a percent of claims                                 | 9%        |
| Fixed expenses as a percent of premium                      | 5%        |
| Annual fixed expense trend                                  | 0%        |
| Variable expenses as a percent of premium                   | 10%       |
| Target profit as a percent of premium                       | 5%        |

(a) (1.5 points) Demonstrate that the indicated rate change using the pure premium approach is 5.9%.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

- Management approves a 4% rate increase for this line of business.
- No further rate changes are expected.
- The annual severity trend is 1.5%.
- The annual frequency trend is 0.5%.
- The annual premium trend is 0.4%.



(b) (3.5 points) Calculate the forecasted profit per policy for policies written in 2022, 2023, 2024 and 2025.

Provide the response for this part in the Excel spreadsheet.



## GIRR Fall 2021 Question 20 (LOs 6a)

#### Learning Outcomes:

(6a) Quantify different types of expenses required for ratemaking including expense trending procedures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 30.

## **Question:**

## 20.

(4 points) You are conducting a ratemaking analysis and are given the following information:

| Calendar<br>Year | Earned<br>Exposures | Direct<br>Written<br>Premium | Direct<br>Earned<br>Premiums | Total<br>Commission<br>Expenses and<br>Premium Taxes | General<br>Expenses |
|------------------|---------------------|------------------------------|------------------------------|------------------------------------------------------|---------------------|
| 2018             | 32,500              | 8,800,000                    | 8,700,000                    | 1,400,000                                            | 1,355,000           |
| 2019             | 33,700              | 9,600,000                    | 9,400,000                    | 1,520,000                                            | 1,450,000           |
| 2020             | 35,100              | 10,200,000                   | 9,900,000                    | 1,620,000                                            | 1,490,000           |

- 25% of general expenses are fixed expenses.
- Unallocated loss adjustment expenses have been 6% of claims for each of the past three years and are expected to increase to 8% for the next five years due to a system update that will cost 1,200,000 to implement.
- The earned exposures in the future rating period are projected to be 37,000.
- (a) (1.5 points) Calculate the total variable expense ratio for each calendar year.

*Provide the response for this part in the Excel spreadsheet.* 

(b) (*1 point*) Recommend the total variable expense ratio to use in ratemaking. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (1.5 points) Recommend the fixed expense per exposure to use in ratemaking. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 



## GIRR Spring 2022 Question 10 (LOs 6a)

#### **Learning Outcomes:**

(6a) Quantify different types of expenses required for ratemaking including expense trending procedures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 30.

## **Question:**

## 10.

## (5 points)

(a) (2.5 points) Describe the five major categories of expenses that are considered in a ratemaking analysis as defined by U.S. Standards.

ANSWER:

(b) (*1 point*) Describe two different ways for an insurer to incorporate non-proportional reinsurance in a ratemaking analysis.

ANSWER:

(c) (0.5 points) Describe the purpose of a residual market mechanism.

ANSWER:

- (d) (*1 point*) Describe each of the following as used in U.S. workers compensation ratemaking:
  - (i) An expense constant
  - (ii) A premium discount plan

## ANSWER:



## GIRR Spring 2022 Question 17 (LOs 5b, 5e, 6d, 6e, 6g, 6h)

#### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6d) Calculate loadings for catastrophes and large claims.
- (6e) Apply loadings for catastrophes and large claims in ratemaking.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.
- (6h) Demonstrate the use of credibility in ratemaking.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 27, 31, and 32.

### **Question:**

## 17.

(4 points) You are performing a ratemaking analysis for a homeowners book of business. As part of the analysis, you are including a loading for wildfire claims.

You are given the following information:

| Accident Year | Earned<br>Exposures | Ultimate<br>Wildfire Counts | Ultimate<br>Wildfire Claims |
|---------------|---------------------|-----------------------------|-----------------------------|
| 2015          | 11,200              | 0                           | 0                           |
| 2016          | 11,850              | 0                           | 0                           |
| 2017          | 12,500              | 1                           | 1,500,000                   |
| 2018          | 13,750              | 0                           | 0                           |
| 2019          | 15,000              | 1                           | 1,120,000                   |
| 2020          | 16,250              | 0                           | 0                           |
| 2021          | 17,500              | 1                           | 500,000                     |

- New rates are to be effective September 1, 2022, for one year, with all policies written as 12-month policies.
- The annual wildfire claim severity trend is 3%.
- The credibility assigned to wildfire claims for this homeowners book of business is 20%. The complement of credibility is assigned to the industry figures.
- A study of industry results with data as of year-end 2020 indicates a trended ultimate pure premium for wildfire claims of 50, with an average accident date of July 1, 2020.



(a) (2.5 points) Calculate the ultimate pure premium for wildfire claims to be used as a loading in the homeowners premiums.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

- The annual non-wildfire claim severity trend is 4%.
- The annual premium trend is 2.5%.
- Variable expenses are 20% of premiums.
- Fixed expenses are 70 per policy.
- Profit and contingencies are 5% of premium.
- The experience claim ratio for non-wildfire claims as of July 1, 2021, is 67%.
- The calendar year 2021 on-level earned premiums are 21,507,500.
- (b) (1.5 points) Calculate the indicated total premium for the homeowners coverage, including a loading for wildfire claims.

*Provide the response for this part in the Excel spreadsheet.* 



## GIRR Fall 2022 Question 5 (LOs 6a)

#### Learning Outcomes:

(6a) Quantify different types of expenses required for ratemaking including expense trending procedures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 30.

## Question:

# 5.

(4 points) You are conducting an expense analysis to be used in ratemaking for a line of business, and are given the following information:

| Calendar<br>Year | Earned<br>Premiums | Earned Premiums at<br>Current Rate Level | Fixed<br>Expenses |
|------------------|--------------------|------------------------------------------|-------------------|
| 2016             | 13,525,260         | 17,480,000                               | 543,630           |
| 2017             | 14,287,260         | 18,239,240                               | 586,640           |
| 2018             | 15,646,150         | 19,120,010                               | 634,770           |
| 2019             | 16,642,150         | 19,993,320                               | 684,470           |
| 2020             | 18,527,760         | 20,826,540                               | 734,250           |
| 2021             | 20,737,090         | 21,816,000                               | 792,360           |

(a) (1 point) Calculate the historical annual trend in fixed expenses.

*The response for this part is to be provided in the Excel spreadsheet.* 

(b) (0.5 points) Recommend the annual fixed expense trend. Justify your recommendation.

The response for this part is to be provided in the Excel spreadsheet.



You are given the following additional information:

- New rates will be effective June 1, 2023 for one year.
- All policies are written as 12-month policies.
- The annual premium trend is 1%.
- (c) (2.5 points) Calculate the fixed expense ratio to be used in ratemaking, using a simple average from calendar years 2019, 2020 and 2021.

*The response for this part is to be provided in the Excel spreadsheet.* 



## GIRR Fall 2022 Question 14 (LOs 5b, 5c, 5d, 5e, 6e, 6g, 6h)

#### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.
- (6e) Apply loadings for catastrophes and large claims in ratemaking.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.
- (6h) Demonstrate the use of credibility in ratemaking.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 26, 31, and 32.

#### **Question:**

## 14.

(6 points) You are performing a ratemaking analysis of a homeowners book of business for State Q. As part of the analysis, you are reviewing loadings for catastrophes and large claims.

(a) (0.5 points) Describe one way that large claims are differentiated from catastrophe claims when insurers are estimating loadings for ratemaking purposes.

You are given the following State Q ultimate pure premium for non-hurricane weather excluding hail (referred to as weather claims below) per 100 earned house years (EHY):

| Accident<br>Year | Pure Premium<br>per 100 EHY |
|------------------|-----------------------------|
| 2010             | 5,280                       |
| 2011             | 5,770                       |
| 2012             | 6,330                       |
| 2013             | 6,200                       |
| 2014             | 6,920                       |
| 2015             | 7,140                       |
| 2016             | 7,560                       |
| 2017             | 8,300                       |
| 2018             | 8,460                       |



| Accident<br>Year | Pure Premium<br>per 100 EHY |
|------------------|-----------------------------|
| 2019             | 8,850                       |
| 2020             | 9,400                       |
| 2021             | 9,940                       |

- The new rates are to be effective August 1, 2023 for one year.
- All policies are written for 12-month policy terms.
- (b) (*1 point*) Recommend the annual pure premium trend for weather claims. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (1.5 points) Recommend the trended ultimate pure premium for weather claims per 100 EHY to use in ratemaking. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

You are given the following additional information:

|                  | State Q Property excluding Weather Claims |                    |                                                |                                                        |                               |                             |
|------------------|-------------------------------------------|--------------------|------------------------------------------------|--------------------------------------------------------|-------------------------------|-----------------------------|
| Accident<br>Year | Earned<br>House<br>Years                  | Earned<br>Premiums | Earned<br>Premiums at<br>Current Rate<br>Level | Trended Earned<br>Premiums at<br>Current Rate<br>Level | Trended<br>Ultimate<br>Claims | Accident<br>Year<br>Weights |
| 2019             | 16,080                                    | 10,537,200         | 11,064,120                                     | 12,545,160                                             | 7,130,200                     | 25%                         |
| 2020             | 16,560                                    | 11,330,400         | 11,606,760                                     | 12,777,120                                             | 7,449,200                     | 30%                         |
| 2021             | 16,860                                    | 11,802,000         | 11,802,000                                     | 12,613,560                                             | 6,824,400                     | 45%                         |
| Total            | 49,500                                    | 33,669,600         | 34,472,880                                     | 37,935,840                                             | 21,403,800                    | 100%                        |

- The full credibility standard is 80,000 EHY.
- The square root rule is used for partial credibility.
- The trended adjusted country-wide ultimate claim ratio (including ULAE) is 70%.
- The ULAE to claim ratio is 12%.
- The selected fixed expenses are 5% of premiums.
- The selected variable expenses are 15% of premiums.
- The selected profit and contingencies are 4% of premiums.
- (d) (*3 points*) Calculate the indicated rate level change, including a loading for weather claims.



## GIRR Spring 2023 Question 4 (LOs 6a)

#### Learning Outcomes:

(6a) Quantify different types of expenses required for ratemaking including expense trending procedures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 30.

## **Question:**

## **4**.

(*4 points*) You are conducting an analysis of expenses for ratemaking purposes and are given the following:

| Calendar<br>Year | Earned<br>Exposures | Direct<br>Written<br>Premiums | Direct<br>Earned<br>Premiums | Total<br>Commission<br>Expenses and<br>Premium Taxes | General<br>Expenses |
|------------------|---------------------|-------------------------------|------------------------------|------------------------------------------------------|---------------------|
| 2019             | 8,700               | 7,447,430                     | 7,377,050                    | 670,269                                              | 243,420             |
| 2020             | 9,150               | 7,895,360                     | 7,846,640                    | 710,582                                              | 253,065             |
| 2021             | 9,340               | 8,112,390                     | 8,090,270                    | 730,115                                              | 260,640             |
| 2022             | 9,240               | 8,097,340                     | 8,083,570                    | 728,761                                              | 268,436             |
| 2023             |                     |                               |                              |                                                      |                     |
| Budget           | 9,120               | 8,050,000                     | 8,048,900                    | 724,500                                              | 285,000             |

- Fixed expenses are 25% of general expenses.
- An unbudgeted system update will cost 2,500,000 to implement in 2023, and the cost will be spread over four years.
- (a) (2.5 points) Recommend the total variable expense ratio to use in ratemaking. Justify your recommendation.

*Provide the response for this part in the Excel spreadsheet.* 

(b) (1.5 points) Recommend the fixed expense per exposure to use in ratemaking. Justify your recommendation.



## GIRR Spring 2023 Question 5 (LOs 5b, 5c, 5d, 5e, 6g)

#### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 27 and 32.

## **Question:**

# 5.

|                                     | Earned Exposures by Policy Limits |           |           |           |
|-------------------------------------|-----------------------------------|-----------|-----------|-----------|
| <b>Experience</b> Period            | 500,000                           | 1,000,000 | 1,500,000 | 2,000,000 |
| 2015                                | 7,553                             | 5,440     | 4,200     | 2,460     |
| 2016                                | 7,504                             | 5,511     | 4,320     | 2,574     |
| 2017                                | 7,297                             | 5,573     | 4,410     | 2,673     |
| 2018                                | 7,218                             | 5,536     | 4,501     | 2,806     |
| 2019                                | 7,091                             | 5,546     | 4,549     | 2,978     |
| 2020                                | 7,011                             | 5,598     | 4,675     | 3,125     |
| 2021                                | 6,879                             | 5,688     | 4,720     | 3,257     |
| 2022                                | 6,906                             | 5,685     | 4,758     | 3,403     |
| Current Increased<br>Limits Factors | 0.85                              | 1.00      | 1.13      | 1.24      |

(8 points) You are trending earned premiums for ratemaking purposes and are given the following:

(a) (2 *points*) Recommend the annual premium trend due to the shift in policy limits to use for ratemaking. Justify your recommendation.



You are given the following additional information:

- New rates are to be effective September 1, 2023 for one year.
- Premiums are written evenly throughout the year.
- Premiums are earned evenly throughout the policy term.
- Prior to January 1, 2020, all policies were written for 12-month terms.
- Since January 1, 2020, 75% of all policies have been written for 12-month terms and 25% of all policies have been written for 6-month terms.
- The annual trend due to a shift in deductibles is -0.1%
- The annual claim severity trend is 6%.
- The annual claim frequency trend is -1.2%.
- The ratio of ULAE to claims is 7%.
- The ratio of fixed expenses to premiums at current rates is 5%.
- The ratio of variable expenses to premiums is 23%.
- The ratio of profit and contingencies to premiums is 4%.

| Accident<br>Year | Earned<br>Premiums | Premium<br>On-Level Factors | Ultimate<br>Claims |
|------------------|--------------------|-----------------------------|--------------------|
| 2018             | 15,804,847         | 1.064                       | 8,703,669          |
| 2019             | 15,333,428         | 1.106                       | 9,184,011          |
| 2020             | 15,526,085         | 1.104                       | 9,602,493          |
| 2021             | 16,625,910         | 1.049                       | 10,401,614         |
| 2022             | 17,102,494         | 1.026                       | 11,309,041         |

(b) (4 points) Calculate the indicated rate level change for this line of business using a claims ratio approach. Justify any selection(s).

Provide the response for this part in the Excel spreadsheet.

(c) (0.5 points) Describe one reason why an indicated rate change using a pure premium approach may not result in the same result as part (b).

*Provide the response for this part in the Excel spreadsheet.* 

Your colleague calculated the indicated rate change for this line of business to be 6%. The company's management decided to increase rates by 3%.

(d) (*1 point*) Calculate the profit and contingencies to premium ratio implied by a 3% rate increase using your colleague's indicated rate change.



(e) (0.5 points) State two actions the company can take that could help achieve the target profit, given the 3% rate increase.



## GIRR Spring 2023 Question 8 (LOs 5a, 5b, 5e, 6c, 6d)

#### **Learning Outcomes:**

- (5a) Identify and describe the influences of portfolio changes on claim frequency and severity.
- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6c) Explain the requirements for loadings for catastrophes and large claims in ratemaking.
- (6d) Calculate loadings for catastrophes and large claims.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 26, 27, and 31.

## Question:

## 8.

(4 points) You are estimating an earthquake catastrophe loading to use in a ratemaking analysis that was determined from a catastrophe model. You are given the following:

| Modeled expected earthquake claims                              | 450,000          |
|-----------------------------------------------------------------|------------------|
| Date of modeled expected claims cost level                      | July 1, 2022     |
| Date of in-force exposures reflected in catastrophe model       | February 1, 2022 |
| Calendar year 2022 trended earned premium at current rate level | 15,450,000       |
| Annual exposure trend                                           | 1%               |
| Annual claim severity trend                                     | 6%               |
| Effective date of new rates                                     | October 1, 2023  |

All policies are written for 12-month terms and new rates will be in effect for one year.

(a) (*1 point*) Explain why two trend adjustments must be made to the modeled expected earthquake claims to calculate the catastrophe loading for ratemaking.

*Provide the response for this part in the Excel spreadsheet.* 

(b) (2 points) Calculate the catastrophe loading to be used for ratemaking, as a claim ratio.

*Provide the response for this part in the Excel spreadsheet.* 

(c) (0.5 points) Describe an additional step or approach that would increase your confidence in the estimate of expected earthquake claims.

Version 2025-1



Provide the response for this part in the Excel spreadsheet.

Claims following a catastrophe are often subject to demand surge.

(d) (0.5 points) Describe how you would consider the effect of a demand surge in the calculation of the catastrophe loading for ratemaking.



## GIRR Fall 2023 Question 3 (LOs 5b, 5e, 6d)

#### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6d) Calculate loadings for catastrophes and large claims.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 26 and 31.

#### Question:

## 3.

Provide the response for this question in the Excel spreadsheet.

(4 points) You are determining a loading for large claims on a homeowners book of business for a ratemaking exercise.

(a) (0.5 points) State two reasons for using a large claim loading approach when estimating ultimate claims at total limits for ratemaking.

You are given the following:

| Accident<br>Year | Selected Ultimate<br>Claims at 500,000<br>Limit | Selected Ultimate<br>Claims at Total<br>Limits |
|------------------|-------------------------------------------------|------------------------------------------------|
| 2019             | 9,850,000                                       | 12,108,000                                     |
| 2020             | 10,365,000                                      | 12,658,000                                     |
| 2021             | 11,275,000                                      | 15,334,000                                     |
| 2022             | 12,385,000                                      | 14,357,000                                     |

- New rates are effective October 1, 2023 for one year.
- All policies are written for 6-month policy terms.
- The annual severity trend at 500,000 limit is 5%.
- The annual severity trend at total limits is 7%.
- The indicated large claims loading for 500,000 to total limits is 1.28 for the prospective rating period.
- The experience for this homeowners book of business is considered fully credible.



- (b) (2 points) Calculate the large claim loadings at 500,000 limit, adjusted to the cost level for each accident year.
- (c) (0.5 points) Calculate ultimate claims at total limits for each accident year using selected ultimate claims at a 500,000 limit and the large claim loadings from part (b).
- (d) (*1 point*) Describe how the calculations in part (b) are affected when the experience is less than fully credible.



## GIRR Fall 2023 Question 11 (LOs 5b, 5c, 5d, 5e, 6a)

#### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.
- (6a) Quantify different types of expenses required for ratemaking including expense trending procedures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 27 and 30.

## **Question:**

# 11.

Provide the response for this question in the Excel spreadsheet.

(5 points) You are analyzing expenses for ratemaking. The trend in fixed expenses is often analyzed separately from the trend in average premiums.

(a) (0.5 points) Identify why a separate trending procedure for fixed expenses may not be required when analyzed on a per-exposure basis.

You are given the following:

| Calendar<br>Year | Fixed<br>Expenses | Earned<br>Premiums | Earned Premiums<br>at Current Rates |
|------------------|-------------------|--------------------|-------------------------------------|
| 2016             | 461,512           | 5,177,046          | 6,750,220                           |
| 2017             | 493,686           | 5,615,887          | 7,026,059                           |
| 2018             | 530,358           | 6,172,433          | 7,435,117                           |
| 2019             | 571,399           | 6,749,414          | 7,835,156                           |
| 2020             | 622,827           | 7,607,009          | 8,295,015                           |
| 2021             | 665,497           | 8,102,719          | 8,667,071                           |
| 2022             | 725,652           | 8,760,790          | 9,164,015                           |

- New rates are effective November 1, 2023 for one year.
- All policies are written for 12-month policy terms.



- Premiums are written evenly throughout the year.
- Premiums are earned and fixed expenses are incurred evenly throughout the policy term.
- (b) (2 points) Recommend an annual fixed expense trend. Justify your recommendation.
- (c) (2.5 *points*) Recommend a fixed expense ratio to be used in ratemaking. Justify your recommendation.



## GIRR Fall 2023 Question 12 (LOs 5b, 5c, 5d, 5e, 6g, 6h)

#### **Learning Outcomes:**

- (5b) Identify the time periods associated with trending procedures.
- (5c) Analyze and evaluate trend for claims (including frequency, severity, and pure premium) and exposures (including inflation-sensitive exposures and premiums).
- (5d) Choose trend rates for claims (frequency, severity, and pure premium) and exposures.
- (5e) Calculate trend factors for claims and exposures.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.
- (6h) Demonstrate the use of credibility in ratemaking.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 26 and 32.

Actuarial Standards of Practice, Actuarial Standards Board of the American Academy of Actuaries, No. 25, Credibility Procedures, 2013.

#### **Question:**

## 12.

## Provide the response for this question in the Excel spreadsheet.

(6 points) You are conducting a ratemaking analysis and are given the following:

| Accident<br>Year | Earned<br>Exposures | Earned Premiums<br>at Current Rate<br>Level | Ultimate<br>Counts | Ultimate<br>Claims |
|------------------|---------------------|---------------------------------------------|--------------------|--------------------|
| 2018             | 10,146              | 9,400,897                                   | 862                | 13,085,953         |
| 2019             | 10,127              | 9,537,898                                   | 869                | 14,011,147         |
| 2020             | 10,298              | 9,901,002                                   | 875                | 14,968,858         |
| 2021             | 10,291              | 10,263,291                                  | 852                | 15,499,745         |
| 2022             | 10,573              | 10,713,349                                  | 883                | 18,068,228         |

- The historical annual claim frequency trend was -1.0%.
- The annual claim frequency trend is expected to increase to 1.0% for all accidents occurring after December 31, 2022.
- The historical annual claim severity trend was 6.0% and is not expected to change in the future.
- The new rates are effective March 1, 2024 for one year.



- All policies are written for 12-month policy terms.
- The full credibility standard is 4,654 ultimate counts.
- The square root rule is used for partial credibility.
- (a) (2 points) Calculate the trended pure premiums for each accident year.
- (b) (1 point) Recommend a trended pure premium. Justify your recommendation.

You are also given the following:

- The complement of credibility is derived using the average pure premium underlying the current rates adjusted to the cost level of the forecast period of the new rates.
- The current rates are based on the prior ratemaking analysis that was applied to policies effective July 1, 2022 through June 30, 2023, with average pure premium of 1,700.
- (c) (*1 point*) Calculate the pure premium to use for the complement of credibility.

You are also given the following:

- Fixed expenses per exposure are 125.
- The ratio of ULAE to claims is 4%.
- The ratio of variable expenses to premiums is 18%.
- The ratio of profit and contingencies to premiums is 5%.
- (d) (1.5 points) Calculate the credibility-weighted indicated rate.

An alternative for the complement of credibility is to use a pure premium based on industry experience.

(e) (0.5 points) Identify one adjustment that is necessary when relying on a complement of credibility that is a pure premium based on industry experience.



## GIRR Spring 2024 Question 5 (LOs 1d, 1f, 3g, and 3j)

#### **Learning Outcomes:**

- (2d) Adjust historical earned premiums to current rate levels.
- (5b) Identify the time periods associated with trending procedures.
- (5e) Calculate trend factors for claims and exposures.
- (6f) Explain the requirements for loadings for catastrophes and large claims in ratemaking.
- (6g) Calculate loadings for catastrophes and large claims.
- (6h) Apply loadings for catastrophes and large claims in ratemaking.
- (6j) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.
- (6k) Demonstrate the use of credibility in ratemaking.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 13, 26, 31, and 32.

#### **Question:**

## 5.

Provide the response for this question in the Excel spreadsheet.

(*11 points*) You are conducting a ratemaking analysis for a line of business in state S with the following information:

- The new rates are to be effective September 1, 2024, through August 31, 2025.
- All policies are written for 6-month policy terms.
- The annual frequency trend is -1%.
- The annual severity trend is 5%.

You are also given the following state S claims data for non-hurricane weather excluding hail:

|                  | Ultimate                                      |          |  |
|------------------|-----------------------------------------------|----------|--|
| Accident<br>Year | Frequency per 100 earned<br>house years (EHY) | Severity |  |
| 2014             | 2.02                                          | 4,100    |  |
| 2015             | 0.39                                          | 3,500    |  |
| 2016             | 1.99                                          | 2,900    |  |
| 2017             | 0.10                                          | 4,400    |  |
| 2018             | 1.99                                          | 2,800    |  |
| 2019             | 0.80                                          | 4,200    |  |



|                  | Ultimate                                      |          |  |  |
|------------------|-----------------------------------------------|----------|--|--|
| Accident<br>Year | Frequency per 100 earned<br>house years (EHY) | Severity |  |  |
| 2020             | 0.63                                          | 2,600    |  |  |
| 2021             | 2.73                                          | 3,600    |  |  |
| 2022             | 0.56                                          | 2,100    |  |  |
| 2023             | 1.69                                          | 3,100    |  |  |

- (a) (2 *points*) Calculate the trended ultimate non-hurricane weather excluding hail pure premium per 100 EHY for all years.
- (b) (0.5 points) Recommend the trended ultimate non-hurricane weather excluding hail pure premium per 100 EHY to use in determining a weather loading. Justify your recommendation.

You are given the following additional information:

- Calendar year 2023 earned premiums at current rate level are 13,089,711.
- Calendar year 2023 EHY are 17,931.
- State S is part of region R.
- The trended ultimate pure premium per 100 EHY for region R is 4,000.
- The credibility that relates to the non-hurricane weather excluding hail loading for state S is 70%.
- (c) (*1 point*) Calculate the non-hurricane weather excluding hail loading percentage to use for ratemaking.

Actuaries can have flexibility in choosing the number of years to include in the experience period for ratemaking purposes.

(d) (*1 point*) Identify two considerations when choosing the number of years and/or the weights to assign to each of the years.



| Accident<br>Year | Earned<br>Exposures | Ultimate<br>Counts | Historical Earned<br>Premiums | Ultimate<br>Claims |
|------------------|---------------------|--------------------|-------------------------------|--------------------|
| 2019             | 20,675              | 1,070              | 13,510,549                    | 8,709,600          |
| 2020             | 19,937              | 1,075              | 13,268,660                    | 8,673,608          |
| 2021             | 17,061              | 1,074              | 11,739,370                    | 7,919,295          |
| 2022             | 17,992              | 1,141              | 12,638,750                    | 8,605,528          |
| 2023             | 17,931              | 1,087              | 13,089,711                    | 9,489,317          |

You are given the following data:

The full credibility standard is 3,654 ultimate counts.

- (e) (*1 point*) Recommend the number of years to include when estimating the weighted average trended claim ratio for the indicated rate change. Justify your recommendation.
- (f) (*1 point*) Recommend the weights to assign to each year when estimating the weighted average trended claim ratio for the indicated rate change. Justify your recommendation.

You are given the following additional information:

- Rate change history:
  - $\circ$  A rate change of +3% was effective July 1, 2020
  - $\circ$  A rate change of +4% was effective July 1, 2022
- Premiums are written and earned evenly throughout the year.
- The annual premium trend is 0%.
- The ratio of ULAE to claims is 5%.
- The ratio of fixed expenses to premiums at current rates is 3%.
- The ratio of variable expenses to premiums is 12%.
- The ratio of profit and contingencies to premiums is 4%.
- (g) (4.5 points) Calculate the indicated rate change for this line of business.



## GIRR Spring 2024 Question 6 (LOs 6a)

#### Learning Outcomes:

(6a) Quantify different types of expenses required for ratemaking including expense trending procedures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 30.

## **Question:**

## **6**.

(3 points) You are conducting an expense analysis to be used in ratemaking.

(a) (0.5 points) Describe how you might account for a start-up cost expense.

ANSWER:

(b) (*1 point*) Explain whether a residual market assessment would be considered a fixed or variable expense.

ANSWER:

(c) (0.5 points) Describe a possible consequence to an insurer treating fixed expenses as variable expenses when determining rates.

ANSWER:

(d) (*1 point*) Describe two situations where you might cap the percentage of variable expenses in a ratemaking analysis.

ANSWER:



## GIRR Fall 2024 Question 3 (LOs 11, 6d, 6e)

### **Learning Outcomes:**

- (11) Understand credibility as used for actuarial work.
- (6d) Calculate loadings for catastrophes and large claims.
- (6e) Apply loadings for catastrophes and large claims in ratemaking.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapters 6 and 31.

## Question:

# 3.

Provide the response for this question in the Excel spreadsheet.

(5 points) Credibility procedures often require the actuary to exercise professional judgment as the assignment of a credibility value is frequently not a precise mathematical exercise. One consideration in assigning credibility is the volume of claims in the experience set of data.

(a) (*1 point*) Identify two other considerations in assigning credibility to an experience set of data.

You are estimating ultimate property claims for ratemaking purposes for State Z. The claims experience of State Z is not fully credible for calculating trend. You are given the following:

| Accident<br>Year | Selected Ultimate Claims<br>at 1,000,000 Limit | Selected Ultimate Claims<br>at Total Limits |
|------------------|------------------------------------------------|---------------------------------------------|
| 2021             | 4,298,400                                      | 4,483,200                                   |
| 2022             | 4,368,900                                      | 4,607,900                                   |
| 2023             | 4,890,200                                      | 5,097,900                                   |

| Selections                     | 1,000,000 Limit | <b>Total Limits</b> |
|--------------------------------|-----------------|---------------------|
| Severity Trend State Z         | 7.0%            | 8.6%                |
| Pure Premium Trend State Z     | 5.5%            | 6.0%                |
| Credibility State Z            | 70%             | 50%                 |
| Countrywide Severity Trend     | 6.0%            | 7.0%                |
| Countrywide Pure Premium Trend | 4.0%            | 5.0%                |



• The claim trend period for accident year 2023 is 32 months.

You are given the following loadings for large claims for the 500,000 to 1 million limit:

| Accident<br>Year | 500,000 to<br>1 Million Limit |
|------------------|-------------------------------|
| 2021             | 1.196                         |
| 2022             | 1.165                         |
| 2023             | 1.185                         |

- (b) (3 points) Calculate the loadings for 500,000 to total limits for each accident year.
- (c) (*1 point*) Recommend a loading for 500,000 to total limits for ratemaking purposes. Justify your recommendation.



## GIRR Fall 2024 Question 5 (LOs 6f, 6g)

#### **Learning Outcomes:**

- (6f) Describe the claim ratio and pure premium methods of ratemaking.
- (6g) Calculate indicated rates and indicated rate changes using the claim ratio and pure premium methods.

### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 32.

#### Question:

# 5.

#### Provide the response for this question in the Excel spreadsheet.

| Accident<br>Year | Earned<br>Exposures | Earned<br>Premiums | Trended Earned<br>Premiums at<br>Current Rate<br>Levels | Ultimate<br>Claims | Trended<br>Ultimate<br>Claims |
|------------------|---------------------|--------------------|---------------------------------------------------------|--------------------|-------------------------------|
| 2019             | 18,640              | 13,086,213         | 14,390,080                                              | 8,091,546          | 10,866,820                    |
| 2020             | 18,240              | 13,193,295         | 14,154,240                                              | 7,568,826          | 9,735,481                     |
| 2021             | 17,061              | 12,668,001         | 13,341,702                                              | 7,496,606          | 9,235,310                     |
| 2022             | 17,992              | 13,202,396         | 13,835,848                                              | 8,275,177          | 9,763,870                     |
| 2023             | 17,931              | 13,491,867         | 13,878,594                                              | 9,018,480          | 10,191,450                    |

(5 points) You are conducting a ratemaking exercise and are given:

- The ULAE to claim ratio is 8%.
- The selected fixed expenses are 7.5% of premiums.
- The selected variable expenses are 15% of premiums.
- The selected profit and contingency ratio is 5% of premiums.
- The average claim ratio and the average pure premium are calculated using a simple average of all years.
- The indicated rate change using the claim ratio approach is 5.91%.

The pure premium and claim ratio approaches typically provide similar indicated rate changes.

(a) (2.5 points) Demonstrate that the indicated rate change using the pure premium approach is similar to that using the claim ratio approach (i.e.,  $\pm 0.5\%$  of 5.91%).



In general, there are two reasons why there can be a slight difference between indicated rate changes from the claim ratio approach versus the pure premium approach.

(b) (0.5 point) Describe one such reason.

Your company's management decides to increase rates by 2%, instead of the 5.91% rate indication from the claim ratio approach.

(c) (*1 point*) Calculate the profit and contingencies ratio implied by increasing the rates by 2%.

Implementing a lower rate change than indicated will result in higher rate indications for the next rate review, all other things being equal.

(d) (*1 point*) Explain how implementing a lower rate change than indicated will result in higher rate indications for the next rate review using the claim ratio approach.



## GIRR Fall 2024 Question 6 (LOs 6a)

#### Learning Outcomes:

(6a) Quantify different types of expenses required for ratemaking including expense trending procedures.

#### **Source References:**

Fundamentals of General Insurance Actuarial Analysis, Second Edition (2022), J. Friedland, Chapter 30.

#### **Question:**

## 6.

## Provide the response for this question in the Excel spreadsheet.

| Calendar<br>Year | Earned<br>Exposures | Direct<br>Written<br>Premium | Direct<br>Earned<br>Premiums | Total Commission<br>Expenses and<br>Premium Taxes | General<br>Expenses |
|------------------|---------------------|------------------------------|------------------------------|---------------------------------------------------|---------------------|
| 2019             | 25,800              | 19,350,000                   | 18,990,120                   | 2,515,500                                         | 1,450,000           |
| 2020             | 24,500              | 19,042,510                   | 18,724,770                   | 2,475,500                                         | 1,420,000           |
| 2021             | 23,100              | 18,507,860                   | 18,240,290                   | 2,313,500                                         | 1,440,000           |
| 2022             | 21,900              | 18,094,650                   | 17,753,030                   | 2,171,400                                         | 1,420,000           |
| 2023             | 20,750              | 17,771,250                   | 17,447,750                   | 2,132,600                                         | 1,390,000           |

(4 points) You are conducting a ratemaking exercise and are given:

- Fixed expenses are 40% of general expenses.
- The annual trend for fixed expenses is 2%.
- Fixed expenses are incurred at the time of writing each policy.
- Premiums are written evenly throughout the year.
- All policies were written for 6-month terms.
- New rates will be effective July 1, 2025 for one year.
- (a) (*1 point*) Calculate the total variable expense ratio for each of calendar years 2019 to 2023.
- (b) (*1 point*) Recommend the total variable expense ratio to use in ratemaking. Justify your recommendation.
- (c) (2 points) Recommend the fixed expense per exposure to use in ratemaking. Justify your recommendation.