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Abstract

In recent years, there has been a new wave of work that is focused on the
forecasting of uncertainty in mortality projections. Such work aims to forecast
a range of possible outcomes along with associated probabilities, instead of a
single prediction that will almost surely be wrong. Conventionally, isolated
(point-wise) prediction intervals are used to quantify the uncertainty in future
mortality rates and other demographic quantities such as life expectancy. A
pointwise interval reflects uncertainty in a variable at a single time point, but
it does not account for any dynamic property of the time-series. As a result, in
situations when the path or trajectory of future mortality rates is important,
a band of pointwise intervals might lead to invalid inference. To improve the
communication of uncertainty, a simultaneous prediction band may be used.
The primary objective of this paper is to demonstrate how simultaneous pre-
diction bands can be created for prevalent stochastic models. The illustrations
in this paper are based on mortality data from the general populations of US
and Canada.

Keywords: Bayesian methods; Longevity risk; The Cairns-Blake-Dowd model.

1 Introduction

When it comes to product pricing and reserving, actuaries often need life tables that

include a forecast of future longevity improvement. However, the production of such
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tables is not straightforward. Tuljapurkar (2005) describes the challenge of forecasting

mortality as “a bumpy road to Shangri-La,” because the demographic future of any

human population is a result of complex and only partially understood mechanisms,

and is highly uncertain. Indeed, recent mortality data have unfolded significant de-

viations between the actual experience and the assumptions that actuaries made in

the past (see, e.g., Continuous Mortality Investigation Bureau, 1999, 2002).

In recent years, actuaries have been understandably concerned about error in the

mortality assumptions they make. Part of their response is a new wave of work that

is focused on the forecasting of uncertainty in longevity improvement, rather than

producing a single mortality projection that will almost surely be wrong. This goal

is accomplished by using stochastic mortality models, for example, the Lee-Carter

model (Lee and Carter, 1992) and its variants (e.g., Renshaw and Haberman, 2003,

2006; Delwarde et al., 2007; Li et al., 2009), which are fitted to historic data. The

resulting models have uncertainty embedded within them, as reflected in historical

change. The use of such a stochastic approach is now highly regarded by leading

actuarial organizations (see, e.g., Continuous Mortality Investigation Bureau, 2004).

Given a fitted stochastic mortality model, we can express the uncertainty asso-

ciated with future death rates in terms of confidence or prediction intervals. The

interval estimates are crucially important to life insurers and annuity providers, since

they provide guidance on how to determine appropriate margins for adverse devia-

tions. They have also drawn considerable attention among academics. For example,

in a study of Canadian insured lives mortality, Li et al. (2007) derived, on the basis

of the original Lee-Carter model, approximate formulas that allow actuaries to calcu-

late confidence intervals for future age-specific central death rates with spreadsheet

software.

Another significant development in this research area is the concept of mortality

fan charts, proposed by Blake et al. (2008) and Dowd et al. (2010a). These charts

are highly parallel to the well known inflation fan charts, which have been produced

periodically by the Bank of England since 1996. A mortality fan chart depicts predic-

tion intervals at different levels of confidence simultaneously. In particular, it shows

the central 10% prediction interval with the heaviest shading, surrounded by the 20%,

30%, ..., 90% prediction intervals with progressively lighter shading. We can there-

fore interpret the degree of shading as the likelihood of the outcome – the darker

the shading, the more likely the outcome. As Blake et al. (2008) mention, mortality
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fan charts have a wide range of applications, including pricing, hedging and setting

capital requirements.

In previous research, including the aforementioned studies, the prediction intervals

derived are mostly isolated pointwise prediction intervals. By pointwise we mean that

the interval reflects uncertainty in a quantity at a single point of time, but it does not

account for any dynamic property of the time-series. However, in actuarial practice,

rather than a single death rate at a particular time point, what practitioners need is

the entire trajectory of mortality rates for the birth cohort in question. Specifically,

of their interest would be questions like “Within what bounds would the trajectory

of cohort mortality rates likely to remain with a certain degree of confidence?” Such

questions are equally important to investors in mortality-linked securities, particularly

those that are path dependent.

From a statistical viewpoint, a band of pointwise intervals might lead to invalid

inference concerning the time trajectory, and in particular to misinterpretation of dy-

namic uncertainty. Assuming that the model is correct, a 100γ% pointwise confidence

interval should cover 100γ% of the random quantity at a certain time point. However,

unless all trajectories develop very orderly, a band of 100γ% pointwise confidence in-

tervals will cover less than 100γ% of the trajectories of the random quantity. In other

words, we may understate the actual uncertainty asscoiated with a random mortality

trajectory if a band of isolated pointwise confidence intervals is used.

The communication of uncertainty can be further improved by considering a band

with a prescribed probability of covering the whole time trajectory. Such a band,

which is referred to as a time-simultaneous prediction band, is the primary focus of

this paper. Interval forecasting from a time-simultaneous perspective has been applied

to economic variables such as GDP (Parigi and Schlitzer, 1995) and unemployment

rate (Kolsrud, 2007). It has also been used in biostatistics to construct prediction

bands for survival functions from models with covariates (Nair, 1984; Scheike and

Zhang, 2003).

In this study we extend the numerical methods proposed by Kolsrud (2007) to

construct time-simultaneous prediction bands for mortality forecasts generated from

prevalent stochastic mortality models. These methods start with a learning sample

of time trajectories generated from a dynamic stochastic model. Suppose that the

trajectories are S steps in length. Then, a trajectory can be seen as a point in an

S-dimensional space, and the learning sample becomes a ‘cloud’ of points. A time-
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simultaneous band is developed by constructing geometrically a high-dimensional box

that contains a prescribed fraction of points in the cloud.

The rest of this paper is organized as follows: Section 2 describes the data we use

for the purpose of illustration; Section 3 provides a formal mathematical definition

of a time-simultaneous prediction band; Section 4 presents the numerical methods

for constructing time-simultaneous prediction bands; illustrations are also provided

in this section; finally, Section 5 concludes the paper.

2 Data

We use historic mortality data for US and Canadian (unisex) populations to illustrate

the methods we propose. The required data, death counts and exposures-to-risk, are

obtained from the Human Mortality Database (2010). We consider data from age 60

to 99 and from year 1951 to 2004. Note that the methods we propose do not require

a specific choice of a sample age range and a sample period.

3 Definitions

Let yt be a general single time-series variable, which can be either stationary or

non-stationary. Suppose that the forecast originates at time T and that the fore-

cast horizon (the period for which the forecast is prepared) is S years. We define a

pointwise prediction interval for yT+s, s = 1, 2, . . . , S, as follows:

Definition 1. PIs = [ls, hs] is a pointwise prediction interval for yT+s with coverage

probability 0 < 1− α ≤ 1 if

Pr(ls ≤ yT+s ≤ hs) = 1− α.

Note that a pointwise prediction interval treats the time-series random variable

at different time points in isolation.

The values of yT+s for s = 1, . . . , S constitute a trajectory y = (yT+1, . . . , yT+S).

Unless all trajectories develop very orderly, the probability that a trajectory lies

completely inside all S pointwise prediction intervals PIs, s = 1, . . . , S, would be less

than 1 − α. Therefore, in situations where the entire trajectory of the time-series

variable is important, a band of pointwise prediction intervals would not be sufficient
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in communicating the underlying uncertainty. This motivates us to consider a time-

simultaneous prediction band, which is defined as follows:

Definition 2. PB = [l,h] = ([ls, hs])
S
s=1 is a time-simultaneous prediction band with

coverage probability 0 < 1− α ≤ 1 for a random trajectory y if

Pr(y ∈ PB) = Pr

(
S⋂

s=1

(ls ≤ yT+s ≤ hs)

)
= 1− α.

The definitions of a pointwise prediction interval and a time-simultaneous predic-

tion band we provide above will be used throughout the rest of this article.

4 Mortality Models

In this section we provide a brief review of two mortality models which we use to

illustrate the concept of time-simultaneous prediction bands.

4.1 The Cairns-Blake-Dowd Model

Cairns et al. (2006) propose a two-factor stochastic mortality model, which is then

called the Cairns-Blake-Dowd model. Mathematically, the model can be expressed as

ln

(
qx,t

1− qx,t

)
= κ

(1)
t + κ

(2)
t (x− x̄), (1)

where qx,t is the realized single-year death probability at age x and time t, x̄ is the

average age over the age range we consider, and κ
(1)
t and κ

(2)
t are period indexes.

In particular, we may consider κ
(1)
t as an indicator of the overall mortality level

at time t and κ
(2)
t as an indicator of the steepness of the mortality curve (in logit

scale) at time t. This model has no identifiability problems, and therefore parameter

constraints are not required. The model can be estimated by the method of maximum

likelihood (see the Appendix). The maximum likelihood estimates of κ
(1)
t and κ

(1)
t ,

t = 1950, . . . , 2004, are shown graphically in Figures 1 and 2.

Note that family of Cairns-Blake-Dowd models is based on qx,t rather than mx,t.

To obtain central death rates, we can use the following relation:

mx,t = − ln(1− qx,t), (2)
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Figure 1: Maximum likelihood estimates of parameters in the Cairns-Blake-Dowd

model, Canadian population.

which holds if we assume that the force of mortality is constant over each year of

integer age and over each calendar year.

After fitting equation (1) to historic death probabilities, the period indexes κ
(1)
t

and κ
(2)
t are modeled by a bivariate random walk with drift, that is,

κt+1 = κt + µ+ CZ(t+ 1), (3)

where κt = (κ
(1)
t , κ

(2)
t )′, µ = (µ1, µ2)

′ is a constant 2× 1 vector, C is a constant 2× 2

upper triangular matrix, and Z(t) is a 2-dimensional standard normal random vector.

Consider the cohort of individuals who are aged x at the forecast origin T . The

best estimate of the death probability for this birth cohort at time T + s is given by

the following equation:

ln

(
q̂x+s,T+s

1− q̂x+s,T+s

)
= κ

(1)
T (s) + κ

(2)
T (s)(x+ s− x̄),

where κ
(1)
T (s) = κ

(1)
T + sµ1 and κ

(2)
T (s) = κ

(2)
T + sµ2 are the minimum sqaure error

(MMSE) forecasts of κ
(1)
T+s and κ

(2)
T+s, respectively. In practice when µ1 and µ2 are not

known, we replace them with their estimates.
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Figure 2: Maximum likelihood estimates of parameters in the Cairns-Blake-Dowd

model, US population.

4.2 The Cairns-Blake-Dowd Model with a Cohort Effect

The original Cairns-Blake-Dowd model is a purely period effect model. It does not

incorporate cohort effects, that is, the observed phenomenon that people born in

certain years have experienced more rapid improvement in people born in other years.

In a report by the Continuous Mortality Investigation Bureau (2002), it was noted

that cohort effects are highly significant in the mortality experience of UK male

pensioners and UK male insured lives. Therefore, in some situations, a model with a

cohort effect is needed for adequate fit.

To model cohort effects, we may consider the following generalization of the

Cairns-Blake-Dowd model:

ln

(
qx,t

1− qx,t

)
= κ

(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γ
(4)
t−x, (4)

where κ
(1)
t , κ

(2)
t , and κ

(3)
t are period risk factors, γ

(4)
t−x is a cohort risk factor, and σ̂2

x

is the mean of (x− x̄)2 over the age range we consider.1

1This model is labeled as Model M7 in Cairns et al. (2009).
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This generalization is different from the original Cairns-Blake-Dowd model in two

ways. First, it contains a cohort risk factor γ
(4)
t−x that is explicitly linked to the year of

birth, t−x. The response to γ
(4)
t−x is constant over age. Second, it includes a quadratic

term κ
(3)
t ((x− x̄)2− σ̂2

x) to capture the potential curvature in the relationship between

ln
(

qx,t

1−qx,t

)
and x.

As with the Lee-Carter model, there is an identifiability problem. In more detail,

if κ
(1)
t , κ

(2)
t , κ

(3)
t , and γ

(4)
t−x are model parameters, then it can be shown that

κ̃
(1)
t = κ

(1)
t + φ1 + φ2t+ φ3t

2 + φ3σ̂
2
x,

κ̃
(2)
t = κ

(2)
t − φ2 − 2φ3t,

κ̃
(3)
t = κ

(3)
t + φ3,

and

γ̃
(4)
t−x = γ

(4)
t−x − φ1 − φ2(t− x− x̄)− φ3(t− x− x̄)2

are also parameters of the model. We use the following constraints to stipulate pa-

rameter uniqueness:∑
x,t

γ
(4)
t−x = 0,

∑
x,t

(t− x)γ
(4)
t−x = 0,

∑
x,t

(t− x)2γ
(4)
t−x = 0.

The use of these constraints is equivalent to setting φ1, φ2, and φ3 to 0, thereby

ensuring the fitted γ
(4)
t−x will fluctuate around zero and will have no discernible linear

trend or quadratic curvature. This model can also be estimated by the method of

maximum likelihood, which is described in the Appendix. The parameter estimates

are displayed graphically in Figures 3 and 4.

Having fitted equation (4) to historic data, the period indexes are modeled by a

trivariate random walk with drift:

κt+1 = κt + µ+ CZ(t+ 1), (5)

where κt = (κ
(1)
t , κ

(2)
t , κ

(3)
t )′, µ = (µ1, µ2, µ3)

′ is a constant 3×1 vector, C is a constant

3× 3 upper triangular matrix, and Z(t) is a 3-dimensional standard normal random

vector.
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Figure 3: Maximum likelihood estimates of parameters in the generalized Cairns-

Blake-Dowd model, Canadian population.

For the cohort of individuals who are aged x at the forecast origin T , the best

estimate of the death probability at time T + s can be calculated with the following

equation:

ln

(
q̂x+s,T+s

1− q̂x+s,T+s

)
= κ

(1)
T (s) + κ

(2)
T (s)(x+ s− x̄)

+κ
(3)
T (s)((x+ s− x̄)2 − σ̂2

x) + γ
(4)
T−x, (6)

where κ
(i)
T (m) = κ

(i)
T + sµi, i = 1, 2, 3, is the MMSE forecast of κ

(i)
T+s.

2 We replace the

unknown parameters with their estimates in actual calculations.

2The birth cohort used in our illustrations is involved in the data sample, so there is no need to
extrapolate γ(4)

t−x. To make a forecast for individuals who were born in later years, a process for γ(4)
t−x

is needed. As Dowd et al. (2010b) suggest, γ(4)
t−x, which has no long-term trend, may be modeled by

an AR(1) process.
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Figure 4: Maximum likelihood estimates of parameters in the generalized Cairns-

Blake-Dowd model, US population.

5 Time-Simultaneous Prediction bands

Consider again the cohort of individuals who are aged x at the forecast origin T .

Assuming that the forecast horizon is S, the trajectory of interest would be m =

(mx+1,T+1, . . . ,mx+S,T+S). From the stochastic components of the mortality models,

we can simulate realizations of this trajectory. We let

M = {m(n)}Nn=1 = {(m(n)
x+1,T+1, . . . ,m

(n)
x+S,T+S)}Nn=1

be a sample of N simulated trajectories. This sample is called the learning sample,

which can be used to derive prediction bands.

Prediction intervals provided in previous research are mostly pointwise prediction

intervals. They are calculated by considering each death rate in isolation. In partic-

ular, for each s = 1, . . . , S, the sample {m(n)
x+s,T+s}Nn=1 is ordered. Let PIs = [ls, hs]

be a pointwise prediction interval for mx+s,T+s with coverage probability 1−α. Then
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the limits ls and hs are set to the bα/2cth lowest and highest values in the sample,

respectively. Note that, in general, the fraction of trajectories that are completely

inside all S pointwise prediction intervals PIs, s = 1, . . . , S, is less than 1− α.

Our goal is to construct a time-simultaneous prediction band such that d(1− α)Ne
of the trajectories in M are completely inside the band at every time point, while

bαNc are outside the band at one or more points of time. By construction the

band will then contain a randomly selected trajectory m(n) in the sample M with

probability (no less than) 1− α.3

5.1 Adjusted Intervals

Kolsrud (2007) proposes a simple and yet intuitive method, which he calls ‘adjusted

intervals,’ to construct a time-simultaneous prediction band from a learning sample.

The idea behind this method is to widen the pointwise intervals (with pointwise

coverage probability 1− α) uniformly until the band of intervals has simultaneous a

coverage of 1− α. We can implement this method with the following algorithm:

1. For each s =, 1, . . . , S, widen the interval uniformly to include the nearest sam-

ple point above and the nearest sample point below.

2. Check the simultaneous coverage of all intervals in the learning sample M.

3. If the simultaneous coverage is less than the prescribed level 1− α, go to Step

(1). Otherwise, terminate the algorithm. The resulting band of intervals would

contain no less than 1− α of the trajectories in the learning sample.4

Following the algorithm above, we construct time-simultaneous prediction bands

for the death rates associated with the birth cohort in question, on the basis of the

learning samples generated from the Cairns-Blake-Dowd model and its generalization.

The resulting time-simultaneous prediction bands are shown in Figures 5 and 6. Also

shown in the figures are the pointwise confidence intervals and the mean forecasts,

which are obtained by averaging the values in the learning sample for each s =

1, . . . , S.

3In a finite sample the fractions are discrete, and may only be approximately equal to a prescribed
level.

4The final coverage in the sample might be larger than 1− α, because each uniform widening of
all intervals includes at least two new trajectories.
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We observe from Figures 5 and 6 that the time-simultaneous prediction bands

are significantly wider than the corresponding pointwise intervals. In particular, the

pointwise intervals (with pointwise coverage of 95%) can only capture 68-69% of the

trajectories in the learning sample. It is clear from this illustration that pointwise

confidence intervals may seriously understate the uncertainty associated with random

trajectories.

It is also interesting to note that the prediction band derived from the generalized

model with a cohort effect is considerably wider than that from the original model.

This is because the generalized version, which contains more parameters (stochas-

tic factors), has a less stringent model structure, imposing less restrictions to the

dynamics of future mortality rates.

5.2 Chebyshev Bands

Another method proposed by Kolsrud (2007) is called ‘Chebyshev bands.’ To explain

Chebyshev bands, we need to define the envelope of a sample:

Definition 3. The envelope of a (sub)sample is the tightest band that contains all

trajectories in the (sub)sample.

As an example, the envelope of the learning sample M can be expressed as

([minnm
(n)
x+s,T+s,maxnm

(n)
x+s,T+s])

S
s=1. The idea behind Chebyshev bands is that we

construct a time-simultaneous prediction band as the envelope of a subsample M∗

that contains d(1− α)Ne trajectories with the shortest distance to the mean trajec-

tory

m̄ = (m̄x+1,T+1, . . . , m̄x+S,T+S),

where m̄x+s,T+s = 1
N

∑N
n=1m

(n)
x+s,T+s is the pointwise mean s steps beyond the forecast

origin.

Kolsrud (2007) suggests that we may measure the distance to the mean trajectory

with the weighted Chebyshev distance, which can be expressed as:

max
s=1,...,S

(
|mx+s,T+s − m̄x+s,T+s|

σs

)
,

where

σs =

√√√√ 1

N

N∑
n=1

(mx+s,T+s − m̄x+s,T+s)
2
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Figure 5: Forecasts of the central death rate (m60+s,2004+s) for the cohort aged 60

in year 2004, Canadian population. The time-simultaneous prediction bands are

constructed by the method of adjusted intervals.
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Figure 6: Forecasts of the central death rate (m60+s,2004+s) for the cohort aged 60 in

year 2004, US population. The time-simultaneous prediction bands are constructed

by the method of adjusted intervals.
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is the pointwise standard deviation s steps beyond the forecast origin. Contrary

to most geometric or probabilistic measures of distance, the weighted Chebyshev dis-

tance relates directly to the S-dimensional rectangular shape of a band. The distances

are weighted by the pointwise standard deviations to take possible heteroskedastic-

ity in the learning sample into account. This issue is important in our application

because the volatility of the simulated death rates increases with both age and the

distance from the forecast origin.

Using the method described above, we construct time-simultaneous prediction

bands from the learning samples that are based on the two mortality models we

consider. The resulting prediction bands are displayed in Figures 7 and 8. For the

reader’s reference, we also display the corresponding pointwise confidence intervals,

mean forecasts and envelopes of the learning samples.

As with those constructed by the other numerical method, the time-simultaneous

prediction bands in Figures 7 and 8 are significantly wider than the corresponding

pointwise intervals. We also observe that the generalized Cairns-Blake-Dowd model

yields a more conservative prediction band, because, as we mentioned earlier, it is less

restrictive than the original version. The widths of the bands constructed by both

numerical methods are very close to each other, with an average percentage difference

of less than 5%.

6 Concluding Remarks

Future mortality rates are difficult to predict, so measures of uncertainty such as

prediction intervals are particularly important to users of mortality projections. We

have demonstrated that pointwise prediction intervals, which are often provided in

previous mortality studies, can significantly understate the uncertainty associated

with a random mortality trajectory. The use of a time-simultaneous prediction band

is strongly recommended when the user demands a forecast of a whole path of cohort

death rates.

We have introduced two numerical methods for constructing a time-simultaneous

prediction band, namely adjusted intervals and Chebyshev bands. These methods

can be applied to all stochastic mortality models from which sample paths of future

mortality rates can be generated. They do not require knowledge or assumptions

about the simultaneous distribution of the random trajectory. Other than cohort
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Figure 7: Forecasts of the central death rate (m60+s,2004+s) for the cohort aged 60

in year 2004, Canadian population. The time-simultaneous prediction bands are

constructed by the method of Chebyshev bands.
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Figure 8: Forecasts of the central death rate (m60+s,2004+s) for the cohort aged 60 in

year 2004, US population. The time-simultaneous prediction bands are constructed

by the method of Chebyshev bands.
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mortality rates, they can be applied to various demographic quantities, such as pe-

riod mortality rates and period life expectancies, by adjusting the definition of the

trajectory and the learning sample accordingly.

The problem of model risk has not been taken into account in this study. De-

nuit (2009) proposes handling model risk by considering a set of different mortality

projection models. Given the available data, each model is assigned a weight that

is determined by a model selection criterion such as BIC (Schwarz, 1978). One av-

enue for future research is to explore how this method can be integrated into the

construction of time-simultaneous prediction bands.
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Appendix

Maximum Likelihood Estimation for the Stochastic Mortality Models

All models in this paper can be fitted by the method of maximum likelihood. Let us
define Dx,t by the number of deaths at age x and in year t, and Ex,t by the corresponding
exposures to the risk of death. To construct the likelihood function, we treat Dx,t as
independent Poisson responses, that is,

Dx,t ∼ Poisson(Ex,tmx,t),

where Ex,tmx,t is the expected number of deaths at age x and in year t. This gives the
following log-likelihood, which is applicable to all three models:

l =
∑
x,t

(Dx,t ln(Ex,tmx,t)− Ex,tmx,t − ln(Dx,t!)), (7)

where Dx,t! stands for Dx,t factorial. The summation is taken over all x in the sample age
range and all t in the sample period.

For the Cairns-Blake-Dowd model and its generalization, which are based on qx,t rather
than mx,t, we use the following relation:

mx,t = − ln(1− qx,t), (8)
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which holds if we assume that the force of mortality is constant over each year of integer
age and over each calendar year. The required likelihood functions can be obtained by
substituting the model equations into equation (8) and then into equation (7).

Parameter estimates can be obtained by maximizing the corresponding likelihood func-
tion. The maximization can be accomplished by an iterative Newton-Raphson method,
in which parameters are updated one at a time. The updating of a typical parameter θ
proceeds according to

u(θ) = θ − ∂l/∂θ

∂2l/∂θ2
,

where u(θ) is the updated value of θ in the iteration. The parameter constraints (if any)
are applied at the end of each iteration.
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