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8.5 Allocation of the Risk to Insurance " o

In Section 8.3 recursion relations for benefit reserves ate developed by an analysis
of the insurer’s annual cash income and cash outflow. Now we extend this analysis
to an accrual or incurred basis and develop allocations of the risk, as measured by
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the variance of the loss variables, to the insurance years. Figure 8.5.1 shows in a
time diagtam the insurer’s annual cash incomes, cash outflows, and changes in
Hability for the general fully discrete insurance of (821) The random variable C,
is related to the cash flows of the policy year (4, & + 1). We now define a random
variable related to the total change in liability, cash flow, and reserves.

i
Insurer’s Cash Incomes, Outflows, and Changes in Liability
for Fully Discrete General Insurance

Outflow 0 0 0 i+

Ir\come Ta m Ty ﬂK(x) 0

ALiability Vo V(1) V-V — I+ 0 et
o 1 2 K(x) K(x)+1 K(x)+2

Let A, denote the present value at i {(a non-negative integer) of the insurer’s cash
loss plus change in liability during the year (h, & + 1}. If (b, & + 1) is before the
year of death [k < K(x)], then

A, = C, + v Aliability = - &, + v .,V — ,V.
If (h, I + 1) is the year of death [k = K(x)], then
Ah = Ch + UALiability =u bh+1 - "ITh - }tV‘

And if (h, i + 1) is after the year of death, of course A, = 0. Restating this definition
as a function of K(x), and rearranging the terms,

0 Kx)=0,1,. .,h~1
Ay =0 By — W) + (—4V) Kx)=h (851)
(_Trh) + (U },+1V o hV) K(X) =} + ]., h+ 2, o

The definition of A, in (8.5.1) can be rewritten to display A, as the loss variable for
a l-year term insurance with a benefit equal to the amount at risk on the basic
policy. See Exercise 8.31.

It follows that
E[AJK(X) = hl = U byyy Guuy + U etV Peen — (1 + V), (852)
which is zero by (8.3.10).

Since the conditional distribution of A,, given K(x) = h, h + 1, . ., is a two-
point distribution, then

Var{A|K(x) = k] = [0@y1 = 41 VIP Prok v (85.3)
With j = h we can use (2.2 10) and (2.2.11) to obtain
EIAJK() = j1 = 0 (854)

and
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Var[A,,lK(x) zj]= VaI{Ah|K(x) = hj E—jPx+i (855)

Unlike the C,'s of Section 83, the A,’s are uncortelated, an assertion that is
proved in the following lemma This fact conveys some sense of the role of reserves
in stabilizing financial reporting of insurance operations.

Lemma 8.5.1:
For non-negative integers satisfying ¢ < h < j,

Cov[A,, AJKx) = g] = 0. (8.5.6)

Proof:
From (854), E[A,JK(x) = g] = 0; therefore,

Cov[A,, A;/K(x) = g] = E[AA|K(x) = g]

From (8.5.1) we see that A, is equal to the constant (v .,V — ,V — m,) where A is
nonzerc. Thus,

E[AhAle('x) =gl =,V -,V - "Th)E[AjIK(x) =gl =0,
and

CovIAA K = g1 = 0 N

We now express the loss variables ;L in terms of the A,’s From the definition
of the A,’s and formula (8.3 6),

,Zh vi™ Ay = ) viTMC; + vALiability (j, j + 1)]

j=h
=L + >, v/" ALiability (f, j + 1). (8.5.8)
j=h

Conceptually the last term will be the present value of the final liability minus the
liability at &, that is, 0 — ,V. Thus we have the relationship

0 K(x) <h
WL = 3= (8.5.9)
21 vih A+ LV K(x) = b,
=
which can be 1ewritten as
0 K(x) < h
WLo= dhvim1 = (8510

2 VA D UTRA .V K) = h

j=h j=h+i

These relationships can be interpreted as stating that the present value of future
losses, measured at time /1 following issue, is equal to the present value of future
cash flows, adjusted for changes in reserves, plus the reserve at k

Using the representation of I, shown in (8 5.9), we have
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Var[,LK(x) = h] = 2 v Var[AK(x) = h]

j=h

=2, 0 b Var[AJK() = ]

j=h

= }Z}r Uz{j_h) }"hpr+il{{v(b}+1 - )+1V)]2 Px+jqr+j] (8511)
In this development the first line makes use of Lemma 8 5.1, the second (85 5), and
the third (85 3).

Starting with (8.5 10} we can follow identical steps to obtain

h+i—1

Var[ L|K(x) = h] = 3 o™ Var[AjK(x) = k]

j=h

+ 2, v VarJAK(x) = h]

j=h+i
h+i—1

= < p2Umh j—hprrh{[U(b;Jrl - ;‘+1V)]2 Pt ifast

J

2 O pllol VI pege) 8512)

J=h+i

The second summation can be rewritten by replacing the summation variable by

| + h to obtain

v Prenll0Bpiriy = winy 1V)]2 Prsnsiforsat

INgE

f

1

— 2 (i~

= 0% Py ?_j v P {0y = e VP PsierFrrnaal
=i

UZI Ipx+h VaI[hHLlI(-(x) = h + 1} (8513)

I

The main results of these developments will be summarized as a theorem

Var(,LIK(x) = )

a = > v Var[A [K(x) = k] | (8514)
j=h

b = Z} Uz{j——h) j-—irpx-nz {[U(bj+1 - j+1v)]2 Pw‘i‘m} . (8 5 }-5)
e

c = z} 20 j—mhpx—rh{{u(bﬁl - “1V)]2 Pw,qw}
I=h
+v¥ po, Varl, LK) = B+ ] (85 16)
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Proof:

(a) follows from (8 5.11), first line
(b) follows from (8 5.11), third line
(c) follows from (8.5.12) and (85 13).

We refer to this theorem as the Hattendo1f theorem, and we illustrate its appli-
cation in the following two examples Items (b) and (c) of the theorem can be used
as backward recursion formulas that are useful for understanding the duration
allocation of risk and, perhaps, for computing.

Just as the random variables C, introduced in (8.3.1), allocate each loss to insur-
ance years, and the random variables A, introduced in (8 5.1), allocate cash loss
and liability adjustment to insurance years, the Hattendorf theorem facilitates the
allocation of mortality risk, as measured by Var[,I|[K(x) = k] to inswrance years,
This allocation facilitates risk management planning for a limited number of future
insurance years rather than for the entire insurance period This option permits
sequential risk management decisions.

The formula Var[AJK(x) = k] = [v(b; — paV)Pendss confirms that the
amount at risk (b,,, — ;.;V) is a major determinate of mortality 1isk, as measured
by the variance In fact if b,,, = ,,,V for all non-negative integer values of A,
mortality risk drops to zero.

“Example 8.5.1
Consider an insured from Example 7.4.3 who has survived to the end of the
second policy year. For this insured, evaluate
a. Var[,L|K(50) = 2] directly
b Var[,L|K(50) = 2] by means of the Hattendorf theorem
c. Var[,L|K(50) = 3] '
d. Var[,L|K(50) = 4]

Solution:

a. For the direct calculation, we need a table of values for ,I..

Conditional
Outcome Probability
of K(50) — 2 = L of Quicome
0 1,000v — 6.55692 iy = 936.84 ofsz = 0.0069724
1 1,0000? — 6.55692 iz = 87725 g, = 00075227
2 L,0000® — 655692 iz = 82104  ygs, = 0.0081170
=3 0 — 6.55692 45 = —18.58 aPs, = 0.9773879

Then E[,L|K(50) = 2} = 164, in agreement with the value shown in Example
743 and
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Var[,L|K(50) = 2] = EL,L}K(50) = 2] — (E[,LIK(50) = 2])*
= 17,717.82 — (1 64)*

= 17,715.1.
b. To apply the Hattendorf theorem, we can use the benefit reserves from Example
743 to calculate the variances of the losses associated with the 1l-year term

insurances.

j 524 v (1,000 ~ 1,000 5,41V 53 Poass G524;
0 0.0065724 6 140 842
1 0 0075755 6 674910
2 0.0082364 7 269.991

Then by (8.5.15),
Var[,LIK(50) = 2] = 6,140 842 + (1.06)7%(6,674 910)p.,

+ (106)747,269.991),p., = 17,715 1,

which agrees with the value found by the direct calculation in part (a).

Note that in the direct method it was necessary to consider the gain in the
event of survival to age 55; but for the Hattendorf theorem, we need to consider
only the losses associated with the 1-year term insurances for the net amounts
at risk in the remaining policy years. Thereaftet, the net amount at risk is 0, and
the corresponding terms in (8.5.15) vanish.

Also note that the standard deviation, V17,7511 = 133 1, for a single policy
is moze than 80 times the benefit reserve, E[,LIK(50)=2, 3,. . ] = 1 64.

Similarly, we use (8.5.15) to calculate
c. Var[,LiK(50) = 3] = 6,674.910 + {106)"%7,269.991) Pss = 13,0962
d. Var[,LIK(50) = 4] = 7,269.991, or after rounding, 7,270.0. A 4

Example 85.2 .00
Consider a portfolio of 1,500 policies of the type desctibed in Example 7.4.3 and

discussed in Example 851 Assume all policies have annual premiums due im-

mediately Further, assume 750 policies are at duration 2, 500 are at duration 3,

and 250 are at duration 4, and that the policies in each group are evenly divided

between those with 1,000 face amount and those with 3,000 face amount

a. Calculate the aggregate benefit reserve.

b. Calculate the variance of the prospective losses over the remaining periods of
coverage of the policies assuming such losses are independent. Also, calculate
the amount which, on the basis of the normal approximation, will give the in-
surer a probability of 0.95 of meeting the future obligations to this block of
business

¢. Calculate the variance of the losses associated with the 1-year term insurances

for the net amounts at risk under the policies and the amount of supplement to
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the aggregate benefit reserve that, on the basis of the normal approximation, will
give the insurer a probability of 0.95 of meeting the obligations to this block of

business for the 1-year period.
d Redo (b) and (¢) with each set of policies increased 100-fold in number.

Solution:

a Let Z be the sum of the prospective losses on the 1,500 policies. The symbols
E[Z] and Va1(Z) used below for the mean and variance of the portfolio of 1,500
policies are abridged, for in both cases the expectations are to be computed with
respect to the set of conditions given above for the insureds. Using the results
of Example 7 4.3, we have for the aggregate benefit reserve

E[Z] = [375(1) + 375(3)](164) + [250(1) + 250(3)](1.73)
+ [125(1) + 125(3)](1.21)

= 4,795
b. From Example 8.5.1, we have

Var(Z) = [375(1) + 375(9)](17,715.1)
+ [250(1) + 250(9)1(13,096 2)
+ [125(1) + 125(9))(7,270 0)
= (1.0825962) X 108
and o, = 10,4048

Then, if

Z-47950 ¢~ 4,795.0)

005 =Tz >0 PI( 10,404 8 10,4048

the normal approximation would imply

¢ — 47950
10,4048 1645,
Oor
¢ = 21,911,

which is 4.6 times the aggregate benefit reserve, E[Z].

¢ Here we take account of only the next yeat’s risk For each policy, we consider
a variable equal to the loss associated with a 1-year term insurance for the net
amount at risk. Let Z; be the sum of these loss variables. The expected loss for
each of the 1-year term insurances is 0, hence E[Z,} = 0.

from the table in part (b) of Example 8 5 1 we can obtain the variances of the
losses in regard to the 1-year term insurances, and hence
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Var(Z,) = [375(1) + 375(9)](6,140.8) + [250(1) + 250(9))(6.674.9)

+ [125(1) + 125(9))(7,270.0)
= (4.880275) X 107
and o, = 69859.

If ¢, is the required supplement to the aggregate benefit reserve, then

005 = Pr(Z, > c) = Py [0 49— 0
05 =Pz > ) = Pr\ o590~ 69859
and we determine, again by the normal approximation,

¢, = (1.645)(6,985.9) = 11,492,
which is 2 4 times the aggregate benefit reserve 4,795,
d. In this case, E[Z] = 479,500 and Var(Z) = (1.0825962) X 10*°. By the normal

approximation the amount ¢ required to provide a probability of 0.95 that all
future obligations will be met is

479,500 + 1645 V10825962 X 10° = 650,659,
which is 1 36 times the aggregate benefit reserve E[Z].

Also, Var(Z,) is now (4.880275) X 10° The amount ¢, of supplement to the
aggregate benefit reserve required to give a 0.95 probability that the insurer can

meet policy obligations for the next year is 1645 V4880275 X 10*° = 114,918,
or 24% of the aggregate benefit reserve

v
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