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Annex G

Technical underpinnings of aggregation methods

This annex discusses the technical underpinnings of the most popular aggregation
techniques used for the purposes of capital adequacy or solvency assessment, capital
allocation and risk pricing. Aggregation methods have typically coalesced around a standard
tool box. The popularity of these tools and techniques can be explained in part by their
distinct advantages, which include, in different cases, computational convenience, flexibility,
and ease of interpretation. Once they obtain a certain acceptance and use in financial
practice, the popularity of these tools and techniques may be self-reinforcing and persistent.

A potential pitfall of popularity is that the techniques may develop some measure of authority
mainly on the grounds of their widespread use and familiarity. Many users may question
insufficiently their appropriateness for a given application, or may not thoroughly consider
their limitations. This section will summarise the technical concepts involved in these
methods and provide background into the implications, requirements, and limitations of using
them. The three techniques discussed are the variance-covariance approach (and its simpler
variants such as simple summation), copula-based simulation, and scenario-based
simulation.

G VarCovar approach

The variance-covariance (VarCovar) approach is a convenient and commonly used analytical
technique that allows managers to combine marginal (ie, “standalone”) distributions of
losses, or distinct tail losses*® directly (for capital requirements), into a single aggregate loss
distribution or tail loss estimate. The sole requirement is to characterise the level of
interdependence of standalone losses, which is typically accomplished with a matrix of linear
correlations. Some organisations apply VarCovar at lower levels of risk aggregation, eg, to
aggregate market price risk in the trading book. A common use, and one that will be the
focus of this section, is to apply VarCovar at the top level of risk aggregation, where
fundamental drivers used to model lower-level risks often cannot easily be combined. At a
banking organisation, for example, VarCovar may be used to aggregate losses from “trading
book market risk,” “banking book credit risk,” “operational risk,” and so on. The main
advantages of VarCovar are that it uses a limited number of inputs, can be evaluated
formulaically, and does not require fundamental information about lower-level risks.

Statistical foundation of VarCovar

Some of the simplest top-level risk aggregation practices observed are special cases of
VarCovar, although their VarCovar foundations may not always be acknowledged. These
include the practice of estimating total capital requirements as the sum of lower-level capital
requirements, as well as the practice of taking the square root of the sum of squared lower-

I this discussion, “tail risk” is used as a generic term for any specific tail risk measure — eg, 99% VaR, 95%

VaR, expected shortfall at the 99% tail — that is assumed to be evaluated in a consistent way at a fixed
confidence level for both the aggregate risk and individual lower-level risks. Most of this discussion does not
depend on the specific measure used.
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level capital requirements (implying an assumption of independent lower-level risks). Any use
of VarCovar presumes certain characteristics about the underlying loss distributions.
Whether these accurately describe the actual loss distribution in itself underpins the validity
and implications of applying the approach. For a practical example, if these conditions do not
hold, then calculating aggregate risk level as the sum of lower-level risks, commonly
interpreted as a ceiling on aggregated risk, does not mean that one fully considers the
potential interaction between the lower-level risks or that the aggregate risk is quantified at
the chosen theoretical confidence level. While VarCovar is a simple and highly tractable
approach to risk aggregation, the cost to the unwary user is that it effectively fills in
unspecified details about the nature of the loss distributions, which may or may not be
accurate or intended.

An expression®® for aggregate risk under VarCovar is as follows:

N N N N N
R :ﬂ\/z ZWin cov(i, j) =\/wa;;.2 +2Z Z ww,rr;corr(i, j)
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where R is the aggregate risk or capital requirement, r are the lower-level risks which
compose the aggregate risk (evaluated at a fixed confidence level), cov(i,) is the covariance
between variables i and j, corr(i,j) is their correlation, and w(i) are concentration weights for
the lower-level risk sources (equal to 1 if lower-level risk is already scaled in the end units).
The role of A will be detailed below. The covariance between two variables is equivalent to
the product of the correlation coefficient, the standard deviation of the first variable in the
pair, and the standard deviation of the second. The variance of each variable (the square of
the standard deviation) is found on the diagonal on the covariance matrix and is equivalent to
the covariance of the variable with itself. Assuming the weights are 1, the formula for R is
expressed in matrix notation as V(r'Cr), where r is the vector of lower-level risks and C is the
correlation matrix. R can be any tail risk measure consistent with
a.f(g,h,.;C)= fla.g(.),a.h(.),.;C), where f(.) is the aggregate tail risk corresponding
to lower-level tail risks g(..), h(..), and so on; and correlation matrix C (this property
corresponds to the Positive Homogeneity for a coherent risk measure (see Box A - Coherent
Risk Measures)). An increase in all lower-level tail risks (eg, 99% VaR) by a fixed proportion
must increase aggregate VaR by the same proportion. A canonical example of where this
holds is where lower-level risks are assumed to be normally distributed. Empirical
distributions of aggregate and lower-level losses may be strained to meet this requirement.

A statistical foundation of the variance-covariance approach is that the mean and variance of
a real variable are known if the variable can be expressed as a linear combination of other
variables whose means, variances, and covariances are defined and known. Direct
substituting these relationships into the VarCovar formulation, R divided by A can be
assumed to represent the standard deviation of an aggregate loss distribution so long as
each r(i)/A represents the standard deviation of the " lower-level loss distribution, the
correlation matrix contains the true linear correlation coefficients (more formally, the Pearson
product moment correlations) between any two lower-level losses, and (as customary in
calculating capital requirements) the expected loss in each distribution is assumed to be
zero. ) is the ratio of the tail risk value to the standard deviation; this is specific to the shape

9 J McNeil, R Frey, and P Embrechts, Quantitative Risk Management by A Princeton, 2005.

% Rosenberg, Joshua V and Schuermann, Til, A General Approach to Integrated Risk Management with
Skewed, Fat-Tailed Risk. Journal of Financial Economics, FRB of New York Staff Report No. 185, SSRN -
http://ssrn.com/abstract=880422.
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of the loss distribution and the choice of risk measure (eg, 99% VaR), but must be jointly
applicable to both lower-level and aggregate risks. This is again consistent with the scaling
property described earlier, but has no guarantee of being an empirical reality.

Perfect linear dependence, independence and diversification

The assumed correlation matrix in effect controls the level of diversification recognised by the
enterprise across the lower-level risks using VarCovar. The lower the correlations on the
non-diagonal elements of the matrix (diagonal elements must be equal to 1), the greater the
level of diversification that can be realised with incremental (long) exposure to a risk
component. In addition, simply for VarCovar to be evaluated, the matrix must satisfy
numerical constraints which are explained in Box C discussing the Positive Semi-
Definiteness Assumption. The simple cases of VarCovar that were described earlier are a
consequence of different assumptions for the correlation matrix: for example, assuming a
matrix of 1s is identical to simply summing the lower-level risks to produce aggregate risk,
while applying the identity matrix (1s on the diagonal, Os elsewhere) is equivalent to
calculating aggregate risk as the square root of the sum of squared lower-level risks; the
former represents an assumption of perfect linear correlation and the latter an assumption of
linear independence. In both cases, however, if the aggregation distribution does not scale
as inherently assumed, neither will represent what is intended.

The correlations within the VarCovar

Practitioners usually interpret the elements of the correlation matrix used in VarCovar as the
linear correlations between any given pair of variables, although strictly speaking, the factors
applied in the VarCovar need not represent these as long as they follow the usual numerical
constraints on correlations. In any case, for most multi-variable distributions, the correlation
matrix (containing a single number for each distinct pair of variables) is not sufficient to
determine all the ways that two variables can interact. That appears to be the case only for
members of the family of so-called elliptical distributions, which includes the normal or
Gaussian. Otherwise, it provides only partial information about dependence, and more
information would be needed to describe the full dependence structure (see Box B —
Correlations vs Dependencies). Since capital requirements are concerned with improbable
outcomes, joint behaviour when losses are significant is more important than the correlation
coefficient measured over the entire range of outcomes, good and bad, for those variables,
which represents at best a sort of average of conditional linear dependencies.

Risk managers may try to overcome weaknesses in applying correlations by substituting a
pseudo-correlation matrix, such as a “stressed” or “tail correlation” measure, which may be
derived independently or as an adjustment on historical correlations, as well as by taking ad
hoc adjustments to the risk measure under the previously mentioned simple-sum (“perfect
correlation”) assumption. One drawback of using a subjective or judgment-based
assessment is that it may be calibrated to match a desired overall outcome rather than
receiving an appropriate level of independent justification. More mechanical means of
estimating tail dependence between risk sources, including the use of local approximation for
tail correlation matrices that can be justified under certain hypothetical circumstances, reduce
the level of subjective judgment required.

An alternative to linear correlation matrices involves the use of rank correlation measures
independently of assumed marginal distributions, possibly to accommodate a more
conservative joint distribution or tail correlation matrix. A given rank correlation matrix can be
applied to an unlimited choice of specific standalone distributions for the underlying
variables. In particular, any system of “fat tailed” marginal distributions can be combined as a
jointly fat-tailed multivariable distribution using their rank correlations, including those derived
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from limited or thinner-tailed data. Such a distribution may be capable of producing more
severe and realistic examples of joint behaviour under stress than one could produce by
entering their linear correlations into VarCovar. Rank variables, which are used to calculate
Spearman’s rank correlation, have much of the same properties as the real variables from
which they are derived and can be manipulated similarly. However, since rank
transformations do not preserve the assumptions required of VarCovar (such as uniform risk
scaling), the calculation of an aggregate risk measure using rank information is better suited
to simulation via copula functions, which will be discussed in the next section.

Still another possibility, particularly to overcome lack of data, is the use of factor
decomposition of lower-level risks to determine the correlation between them®'. Factor
models estimate potential changes in the value of a risky asset based on its factor
sensitivities to available risk factors and an idiosyncratic (residual) component. In a pure
factor model, the risk factors are orthogonal, and the idiosyncratic component consists of
independent, Gaussian draws. The covariance of returns across any two assets is
determined by their individual sensitivities to the common factors and their common factor
variances (their correlations are dependent on those things as well as the variances of their
residuals). Factor structures can be estimated using regression or other numerical
techniques, and adjusted in specific ways to engineer a suitable correlation matrix.

VarCovar and other top-down aggregation tools (including copulas) also face difficulty in
dealing with circumstances in which “standalone” risks are not actually exclusive but are
believed to be integrated. This is, for instance, the case for banking market risk and credit
risk, which, while often calculated separately, may originate from the same portfolios, same
underlying events, or the very same entities. Integrating such risks is still a frontier issue in
risk aggregation, and involves interplay of continuous and somewhat discontinuous risk
factors that may not lend themselves to the smooth assumptions of top-down approaches,
particularly constant linear correlations.

Conclusions

It is important to note, in conclusion, that in nearly all cases where it is applied for risk
management, the VarCovar is an imposition of simple dependency structure on what is
believed to be a more complex web of dependencies. Almost all empirical dependencies
involve a huge amount of information and are not readily reduced to a single number per
distinct pair of variables. Copulas, by contrast, are capable of specifying a full dependence
structure, with minimal requirements on what the distributions must actually look like. While
copulas can be made as flexible as the user requires, the results of VarCovar are most akin
to those of copulas simulations on the joint behaviour of known elliptical multivariable
distributions such as the normal/Gaussian. Similarly, pure factor-models, whose correlations
may feed VarCovar formulations, are Gaussian in foundation, though they can be extended.
These limits of the VarCovar, which are inextricably linked to aforementioned VarCovar
constraints on distributions of the standalone risks, can lead to deeply misleading results if
those inherent assumptions do not coincide with the experience or intention of the risk
manager.

5 Meucci, Attilio, Risk and Asset Allocation, 2007, Chapter 3.4.
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G.2 Distribution-based aggregation

In contrast to the VarCovar approach, the copula-based methods described in this section
use entire loss distributions as inputs to the aggregation process, as opposed to single
statistics or risk measures. These allow direct control over the distributional and dependency
assumptions used, and make it possible to impose a wide variety of dependency structures
on the aggregated distributions. Most of the methods in this category are analytically
complex, and do not lend themselves to implementation with closed-form formulas. As a
consequence, these methods almost always involve simulation when used in applications.

Definition

A copula, in simplest terms, can be viewed as a random vector (ie a multivariate distribution)
whose individual components (ie marginal distributions) are all random variables that are
uniformly distributed on the interval [0,1]. The copula-based approach can be used to
describe any multivariate distribution as a set of marginal distributions together with a copula.
The copula specifies the dependency structure among the individual random variables, and
is used to join the marginal distributions together. Sklar's Theorem (1959) states that any
multivariate distribution is uniquely determined by its marginal distributions and a copula, and
that any combination of marginal distributions with a copula gives rise to a valid multivariate
distribution.

This decomposition of multivariate distributions into marginal distributions and a copula
allows practitioners to match any set of individual distributions to a specified dependence
structure using a bottom-up approach. For a given set of random variables, different
dependency structures can be imposed on the variables by specifying different copulas.
Conversely, given a specific copula, random variables having various types of distributions
can be joined together using the copula to produce multivariate distributions having different
marginal distributions but similar dependency structures.

How copulas are used for risk aggregation

Copula techniques depend on the following property that relates a random variable to its
distribution function: If X is any continuous random variable and Fx is the distribution function
of X, then Fx(X) is distributed uniformly on the interval [0,1]. One consequence of this is that
if U is a random variable that is uniformly distributed on the interval [0,1], the random

variable F;' (U) (this is simply the U-th percentile of the random variable X) has the same

distribution as X. This property can be used to simulate X by drawing random samples from a
uniform [0,1] distribution and then evaluating the corresponding percentiles of X, given by the

function F;', at the sampled points.

In practice, an entity will have several loss distributions, corresponding to different types of
losses, that it wishes to aggregate. If we assume that.X,...,.X, are random variables (not

necessarily identically distributed) for n different loss types, whose distribution functions are
qu ,--» Fy  respectively, then the procedure for sampling from the aggregate loss

distribution using a copula is as follows:

1. Draw a joint sample of uniform random variables (i,,...,%,) from the distribution
~ specified by the copula.
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2. Translate the sample from the copula distribution into a sample from the conjoined
loss distribution by calculating the i, -th percentile of X, the i, -th percentile of X,

etc. (in vector form, this is (F,}qI (u, ),...,F,}: (ii,,)) )

3. Calculate the realised sample for the aggregate loss as the sum of the percentiles
drawn from each distribution (ie Fy (i) +- e+ Fy (i) y

4, Drawing many samples for the aggregate loss distribution will produce a simulated
distribution. Any measure of risk (such as VaR or expected shortfall) can be
computed from this simulated distribution.

Step 1) of the above process involves simulating a multivariate distribution, while step 2) only
involves simulating single-variable distributions successively. Thus, step 1) is usually the
hardest part of the process, although many copulas can be simulated without much difficulty.

Example: A company wishes to aggregate two loss distributions: a lognormal distribution that
is the exponent of a normal distribution with mean 2 and standard deviation 1, and an
exponential distribution having mean 12. The company uses a two-dimensional copula that
generates the joint samples shown in columns 2 and 3 of the table below. The uniform
sample in column 2 is translated as a percentile into a sample loss from the lognormal
distribution in column 4, while the uniform sample in column 3 is translated into a sample loss
from the exponential distribution in column 5. The corresponding samples from the aggregate
loss distribution are shown in column 6.

Copula Copula
Sample Sample Lognormal | Exponential
Sample (first (second Distribution | Distribution | Aggregate

Number | component) | component) Sample Sample Loss Sample
(1) (2) (©)] (4) (5) ©6)=0)+4)
1 82.3% 40.6% -2.9 -10.8 -13.7
2 50.3% 79.8% -7.3 -2.7 -10.0
3 9.3% 18.5% -27.7 -20.3 -48.0
4 66.6% 25.5% -4.8 -16.4 -21.2
5 28.4% 61.7% -13.1 -5.8 -18.9
6 42.1% 44.4% -9.0 -9.7 -18.8
7 60.9% 98.6% -5.6 -0.2 -5.8
8 30.6% 10.2% -12.3 -27.3 -39.6
9 97.6% 56.5% -1.0 -6.9 -7.9
10 42.4% 54.0% -8.9 -7.4 -16.3
11 41.0% 2.9% -9.3 -42.3 -51.6
12 14.6% 22.8% -21.2 -17.8 -38.9
13 91.5% 40.1% -1.9 -11.0 -12.8
14 38.4% 93.6% -9.9 -0.8 -10.7
15 55.0% 70.4% -6.5 -4.2 -10.7
16 6.4% 27.2% -33.8 -15.6 -49.5
17 63.1% 70.7% -5.3 -4.2 -9.4
18 8.0% 72.9% -30.2 -3.8 -34.0
19 32.1% 20.6% -11.8 -18.9 -30.7
20 21.8% 55.1% -16.1 -7.2 -23.3
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The next subsection gives a short overview of some of the copula functions used by the
financial industry to aggregate risks.

Distribution functions of copulas

A copula, being a multivariate distribution, can be specified completely by its distribution
function, and copulas are most often analysed in terms of their distribution functions. Since
all of the components of a copula range over the interval [0,1], a copula can be described as
a function C mapping the Euclidean cube [0,1]" to the interval [0,1]. This function must satisfy
all of the conditions that a multivariate distribution function must satisfy (ie non-decreasing in
each component, right continuity, limits of O and 1, rectangle inequality). In addition, since all
of the marginal distributions must be uniform, C must satisfy the condition that, for all
arguments of the function and all v in the interval [0,1]:

ci,...,.Lul....h=u

Any function meeting all of these conditions corresponds to a unique copula®.

Copulas from known distributions
One simple way to generate copula distribution functions is from known multivariate
distributions. Given any multivariate distribution function F having marginal distribution
functions F,,..., F,, the function:

n?

Cluy,..on,) =F(FE @)y, F ()

defines a copula. The widely-used Gaussian copula is defined in this manner: if £ is a
positive semi-definite correlation matrix and @; is the standardised multivariate normal
distribution function having correlation matrix Z, the distribution function for the Gaussian
copula is given by:

Cluy,...,u,)= QZ(CD" (ul),...,qfl(u”))

where @ is the standardised (univariate) normal distribution function. This copula is easy to
simulate because the underlying multivariate normal distribution with correlation matrix Z is

easy to simulate: if (x,,...,x,)is a sample from the correlated multivariate normal

distribution, then (®(x,),...,®(x,)) is a sample from the corresponding Gaussian copula.

This technique is often used with more general multivariate distributions for which the
correlation matrix is a key parameter, such as the class of elliptic distributions.

Archimedean copulas

Another technique for generating copulas is to directly construct functions that meet all of the
requirements to be a distribution function for a multivariate random variable. One example of
such a construction is the class of Archimedean copulas, defined by:

C(ul""’un) :¢_1(¢(ul)+'”+¢(un))

2 We refer to Nelson, Roger, An introduction to Copulas, Springer, 2006 for a more detailed discussion on
distribution functions of copulas
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where ¢:[0,1] — (0,e0)is a strictly decreasing, surjective, infinitely differentiable convex
function. Examples of Archimedean copulas include the Gumbel copula, generated by the
function ¢@(x)=(-Inx)“for a =1, the Clayton copula, generated by the function

p(x)=(x"?-1)/6 for 6>0, and the Frank copula, generated by

(p(x)zln((e“‘ -1)/(e* —1)). In contrast to the Gaussian copula, the Archimedean copulas

have distribution functions that can be simply described in closed form. However, unlike the
Gaussian copula, it is often necessary to use advanced techniques (such as Laplace
transforms) in order to simulate Archimedean copulas.

While it is possible to generate a large range of Archimedean copulas through various
choices of generator @, all of the Archimedean copulas created using the above formula have
the disadvantage of being highly symmetric. Specifically, if one exchanges any two of the
arguments in the distribution function, the function will remain unchanged. This symmetry
limits the use of these copulas to aggregating risks that are uniform and interact in the same
manner, such as credit portfolios of homogeneous risks. They cannot be used to model
asymmetric behaviour, which is quite commonly observed within risks (in bad times, there
are more adverse risk outcomes observed than there are beneficial outcomes observed
during good times). By contrast, the Gaussian copula will not have this symmetry property
unless all off-diagonal elements of the correlation matrix are the same. There have been
many successful attempts in the research literature to generalise the class of Archimedean
copulas to include copulas that are asymmetric.

Measures of dependence for copulas

When aggregating risk exposures, the issue of dependence is extremely important. For
example, a practitioner may wish to have a model that reproduces the phenomenon
observed in the real world that, during stress periods, risks tend to materialise at the same
time. This dependence is a crucial determinant of the shape of the distribution and the
computed risks. Under the copula approach, the entire dependence structure between a set
of random variables is encapsulated in the choice of copula. Thus, any desired dependence
structure can be specified through the choice of copula, which can then be used to aggregate
any set of marginal loss distributions.

Relation between size and dependence

The magnitude of a copula distribution function, or alternatively, the rate at which it increases
from 0 to 1, serves as an indicator of the level of dependence it imposes among the
distributions that it aggregates. For a copula in two variables, the lowest possible value of a
distribution function is given by the Fréchet lower bound:

C(u,,u,) =max(0,u, +u, —1)
This copula implies perfect negative dependence between the aggregated random variables,
ie that one variable is a decreasing function of the other. Under perfect negative

dependence, when one of the aggregated variables is at a high percentile in its range, the
other variable will be at a correspondingly low percentile.

The highest possible value of the distribution function is given by the Fréchet upper bound:

C(u,,u,) = min(u,,u,)
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and implies perfect positive dependence, namely that one variable is an increasing function
of the other. Under perfect positive dependence, when one of the aggregated variables is at
a high percentile, the other variable will be at a similarly high percentile.

In between these lower and upper bounds lies the product copula given by:
Clu,,uy) =uu,

which implies that the two aggregated variables will be independent. Similar concepts of
positive dependence and independence can be extended to copulas in dimensions higher
than 2.

Correlations

When a set of distributions is joined by a copula, the standard (Pearson) correlation matrix of
the resulting multivariate distribution will vary with the marginal distributions that are input to
the copula. Consequently, it is difficult to use the standard correlation measure when working
with copulas, as the effect of the marginal distributions will be confounded with the properties
of the copula. If copula parameters are fit based on the standard correlations observed for a
particular set of marginal distributions, the parameters are likely to lead to invalid results
when the copula is used to aggregate a different set of marginal distributions. This type of
error is often made in practice, and may severely reduce the reliability of the aggregation
measure if not corrected.

In order to avoid having a model's results rendered invalid by the effect of the marginal
distributions on the standard correlation, it is necessary to use measures of correlation that
depend only on the copula itself. This need is met by measures of rank correlation,
specifically the Spearman rho and Kendall tau correlation coefficients [see Box B -
Correlations vs Dependencies]. These have the property that they are invariant under
increasing functions, because they depend only on the relative rank of an observation within
a data set rather than the actual value of the observation. This implies that the measures will
be the same for all multivariate distributions having the same copula, and that they can be
calculated directly from the copula distribution function. As an example, the matrix of
Spearman rho correlations for a copula is simply the Pearson correlation matrix of the
copula’s uniform marginal distributions.

These measures find their greatest use in the calibration of copula parameters, because the
rank correlation measures from observed data can be used to calibrate a copula directly,
without having to make any a priori assumptions about the marginal distributions of the
observations.

Tail dependence

It has been observed that large losses, either from different risk types or within the same risk
type, tend to strike simultaneously during stress situations, and practitioners often wish to
capture this phenomenon in their copula models. This concept can be formalised through the
definition of tail dependence.

Given a copula C in two variables (or alternatively, a two-variable marginal copula taken from
a higher-dimensional copula), a stress situation will correspond to one or both of the
variables taking values close to zero; this will translate into large losses when the copula
values are fed into the inverse distribution functions of the loss random variables. If we know
that one of the copula variables has taken on a small value, this indicates that a stress
scenario may be underway, and that the other copula variable is more likely to take on a
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small value than it usually would be. Mathematically, this means that if U; and U, are the two
uniform copula variables and v is a value close to zero, the conditional probability:

Pr({U, <v |U, <v)

will be higher than v, which is the unconditional probability. Since this conditional probability
can be expressed as:

Pr({U, <vandU, <v)  C(v,v)
Pr(U, <v) v

the coefficient of lower tail dependence for the copula is defined to be:

lim cwv.y)

v=0 Vv

and the copula is said to exhibit lower tail dependence if this limit is greater than zero.

The Gaussian copula does not exhibit any tail dependence between pairs of its variables,
even if the correlation matrix used in the copula is different from the identity matrix. This is
considered to be a major drawback of the Gaussian copula that limits its use in applications.
However, the more general class of elliptic copulas does contain copulas having tail
dependence. In particular, copulas derived from the multivariate ¢ distribution are often
chosen in order to incorporate an explicit degree of tail dependence into the aggregate risk
distribution.

Gausslan copula (correlation = 0) T copula (3 degrees of freedom, correlation = 0)
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The two charts represent the 98% tail regions for a Gaussian copula and for a t copula with 3
degrees of freedom. Both copulas were simulated assuming zero correlation between the
two uniform marginal distributions, and both copulas had 100,000 points sampled. Because
of tail dependence, the t copula has almost seven times as many observations falling within
the tail region, and clusters noticeably at the lower left corner.

Conclusions

The following table summarises the properties of particular copulas that have been
mentioned above:
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Copula type: Gaussian t Archimedean

Ease of simulation Easy Easy Difficult
Capable of modelling
. No Yes Yes
tail dependence?
Symmetric in 2 dimensions, but generally Standard
Symmetry asymmetric in higher dimensions construction is
symmetric

The copula approach is well suited for use in aggregating financial risks because it works
directly with the percentile measures of the loss distributions (this is what the uniform
marginals of a copula represent conceptually). Since virtually all risk measures are based on
percentiles or levels of confidence, the copula approach allows the practitioner to precisely
specify the dependencies in the areas of the loss distributions that are crucial in determining
the level of risk. Another advantage of copulas is that they are usually easy to implement
from a computational standpoint; one side benefit is that simulated losses can be stored and
used for applications beyond aggregate loss modelling.

However, the specification of a copula is very abstract and difficult to interpret, especially
when the copula is given in terms of a distribution function rather than being derived from a
known multivariate distribution. Furthermore, fitting the parameters of a copula is a difficult
statistical problem — the estimators used are often complex and not always robust. These
estimators (particularly the correlation matrices used in Gaussian, t, or other elliptical
copulas) have the vulnerability that they may change over time or during stress periods.
Many firms have discovered that static models based on historical correlations do not prove
accurate when market variables undergo stress. For all of these reasons, implementing
copulas requires a high level of statistical expertise on the part of the practitioner, and
management and other employees who use the output from copula techniques must be
sufficiently versed in the technical aspects of this approach to understand the limitations for a
given aggregation of the firm’s risks.

G.3 Scenario-based aggregation

The previous approaches aggregate by combining statistically derived distributions. In
contrast, scenario-based aggregation aggregates risk expressions to common underlying
scenarios. A scenario is an expression of the state of the financial institution or its portfolios
under certain defined conditions of the external environment. The total profit or loss
characterising the financial institution is usually a simple summation of the partial profit and
losses of the various positions composing the portfolios.

Scenario-analysis - Determining risk drivers and exposures

Developing relevant scenarios requires profound knowledge of the portfolios of the financial
institution to adequately identify and understand the positions taken by the financial
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institution.®® In addition, it requires an identification of the risk drivers of these positions; ie
the stochastic variables that determine the performance of the respective position. Risk
drivers are commonly external to the financial institution, eg financial and economic variables
such as interest rates, GDP and unemployment, health conditions, or weather conditions
determining the natural catastrophes, or social conditions determining material damages
caused by humans (eg car accidents, fire). However, the risk drivers can also be internal or
partly internal to the financial institution, for instance drivers of operational risk. In a next
step, the risk positions are defined in terms of risk exposures relative to the risk drivers. Risk
exposures are summary risk expressions characterising how the economic value of the risk
position depends on the risk driver.

These relationships between the risk exposures and the risk drivers are typically linearised to
preserve a certain level of simplicity. In this case the sensitivity of the risk position to a risk
driver is described. However, practitioners should bear in mind that dependencies are not
always linear (eg with interest rates, or in presence of optionalities).

A comprehensive analysis of the risk portfolios of the financial institution to well identify and
understand the risk positions, and their drivers, and studying and describing the impact of the
risk drivers and the changes in exposures comprise the building blocks of scenario analysis.
These building blocks are necessary aspects to adequately perform scenario stress tests. In
this respect scenario stress tests can be seen as a particular type of scenario analysis, that
focuses on capturing and assessing potential "real-life" extreme events on the economic
value of the financial institution.

Some interviewed firms go one step further and simulate a multitude of scenarios, these
simulations are based on scenario generators.

Scenario simulation

Scenario simulation and scenario generation is made possible through the high computing
power of modern computers. Large series of scenarios are generated by independently
drawing large numbers of random variables and processing the random draws through
models that describe particular processes or phenomena (eg a natural storm, a pandemic or
an economic evolution).

Three types of models or algorithms are distinguished underlying these scenario generators:

1. A first category consists of models that tries to describe and proxy "real physical
processes or natural laws". These processes usually rely on dynamic modelling that
let risk factors develop through time. Examples are for instance pandemics, for
which models describe how the virus can change, propagate between individuals
and how it acts on the individual resulting in states of sickness of various severity or
in death. Similar approaches are being used for wind storms and earthquakes.

2. A second category would be models that describe processes for which there is no
real physical model. The models in this category may rely on a particular theory,
which might (partially) fit certain historical observations. These models then underlie
the scenarios simulated. Often certain ad-hoc distribution assumptions are used to

% Ppositions on the asset side as well as on the liabilities side are considered by the financial institutions as well
as risk positions arising from internal processes of the enterprise (for instance, intra-group transactions,
service agreements and commitments)
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perform the simulations. This is, for instance, the case for most of the financial
processes (eg interest rates, equities prices and indices, exchange rates).

3. Finally the third class of processes combines the first two categories and mixes
physical with theoretical descriptive and empirical processes. Examples might for
instance be processes that integrated natural catastrophe scenarios with economic
and financial scenarios.

Firms may use several different and unrelated event generators to generate particular
scenarios for different portfolios. These different types of scenarios may need to be
integrated in order to obtain global scenarios that are applied on the different portfolios of the
financial institution. When the scenarios are considered to be independent, scenarios can
simply be randomly combined. However, when the scenarios are not independent
mechanisms have to allow for interactions between the generators. These interactions are
introduced through different methods. A simple technical method consists of using a
covariance matrix (ie VarCovar approach as described above). Copulas are also often used
to combine events from different event generators. In case the methods clearly show
limitations and interactions between the scenarios are complex then the modelling of the
different processes have to be performed simultaneously, leading to complicated event
generators (eg pandemics and financial market risk factors).

As is typically the case when relying on simulation techniques, an issue to address is the
number of simulation runs or events required to obtain an adequate level of precision in the
estimate. Determining the required precision is not a difficult task but it is important to
consider in the risk measurement process.

Conclusions

Scenario-based aggregation is conceptually and intellectually appealing as it eliminates ad-
hoc methods of aggregation by aggregating exposures on the basis of common scenarios.
As a result, the risk aggregation process avoids the common approach of inserting
statistically derived distributions into risk management processes that may not reflect
operational or legal business lines.

Proper scenario-based aggregation requires a profound understanding of the risks the firm is
exposed to; it forces the firm to make extensive assessments of its portfolio risks and to
identify risk drivers and assess the exposures to these risk drivers. Obtaining a clear view on
the economic condition of the firm and deriving relevant economic scenarios proves hard and
requires a strong reliance on the expert judgment and qualitative insights of the
management. It requires experts and managers to develop solid representations of and
views in various areas of the economic "reality" of their financial institution. Building this
required knowledge and understanding takes time and it is not without its own risks as the
potential to overlook exposures or have the profile change during the modelling period is an
issue that the experts need to remain cognizant of.

In addition, scenario-based aggregation relies heavily on a range of assumptions (eg
regarding the scenarios considered or developed, the scenarios being selected and the
expression of risk positions in terms of exposures to the scenarios) which have to be well
understood and considered when interpreting the results. In particular, it is not
straightforward to reconcile the scenarios with the more traditional parametric descriptions of
the risk.

The results of the scenario analysis and scenario simulation can be relatively easily and

meaningfully interpreted in an economic and financial context. In addition, a firm can, for
example, develop emergency or recovery plans from extreme scenarios. Consequently,
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although the team performing the modelling usually needs to be relatively highly specialised,
the results and interpretation of the results can be understood by a non expert executive
manager.

Scenario simulation requires sufficient computing power and solid IT programs and
platforms. The modern and well built simulation programmes commonly support changes to
the dependencies and the distributions, allowing the user to make prospective studies, study
sensitivities and stability of processes and thereby test the robustness of the methods. The
programs can allow certain scenarios to be given specific weights and additional scenarios
can be (artificially) added to focus on particular aspects of the risk. These methods
demonstrate a great deal of flexibility that does not exist in the more simple aggregation
methods.
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Box A — Coherent risk measures

A reasonable description of a risk situation requires knowledge of a lot of information
whereas a risk measure is a single number, leading to a significant reduction of information.
On the other hand, a financial actor (eg investor, underwriter or regulator) takes a binary
decision (to invest , to subscribe, to authorise). In this respect, a risk measure should as
adequately as possible reflect the properties of the risk being considered.

Properties required by a coherent risk measure

At least 15 years of agitated discussions have resulted in the establishment of the essential
properties that an adequate risk measure should obey([1], [2]):

. The choice of a reference instrument (usually a one year risk free state bond) is a
vital ingredient and can be considered as a yardstick to which the risk will be
compared.

o Positive homogeneity: implies that if a position has a risk, doubling the risk position
leads to doubling the risk.

o Sub-additivity: means that the risk of the sum of two positions is always smaller or
equal to the sum of the risks of the two positions.

o Translation invariance; adding to a portfolio an amount of cash invested in the
reference instrument reduces the risk measurement of this portfolio by the same
amount.

. Monotonicity: a position that always results in smaller losses than another position
always has a smaller risk than the other position.

Examples of coherent and non-coherent risk measures:
Several risks measures are already widely used in practice. They have different properties:

. Total exposure: is a coherent risk measure, in fact the most severe one for a given
reference instrument. In practice, the exposure is traditionally "weighted" to provide
a more adequate risk measure.

. Standard deviation based risk measures: defined as the standard deviation relative
to the expected value of the position. A certain refinement would be the use of the
semi variance on the loss side of the distribution. It is not a coherent risk measure
as it does not fulfill the monotonicity property.

. Value at Risk: simply reflects the quantile at a particular defined quantile level ().
This is a widely used and intuitive risk measure, however, it is not a coherent risk
measure as it does not fulfill the sub-additivity property. This poses a severe draw-
back to the use of the VaR measure.

. Expected Shortfall (or Tail-Value-at-Risk): has been mainly developed to cope with
the non sub-additivity condition of the Value-at-Risk measure. It is defined as the
average value of the losses at quantiles lower than the specified quantile (a).

Coherent measures of risk in practice

A crucial property for a coherent risk measure is the sub-additivity condition. As mentioned
previously the VaR measure fails to satisfy this condition although the measure is widely
used in practice. This can be explained by the fact that when distributions are normal or
close to normal it can be shown that Value at Risk and Expected Shortfall are quite close
and behave similarly. In this respect, normal distribution assumptions are quite common to
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simplify the risk measurement. However, as soon as a risk position is characterised by a
long tail behaviour, the similarity between VaR and ES does not hold anymore. Unwarily
employing the VaR measure to risk positions characterised by long tail risk may lead to a
strong underestimation of the risk. Furthermore mixing risk measures established with
different reference instruments and with different currencies can also lead to unexpected
behaviours.

Coherent risk measure and use of scenarios

A highly interesting property (known as the representation theorem, see [1]) allows
establishing a comprehensive link between coherent risk measures and scenarios.

A scenario is stricto sensu a well precise possible realisation of the future (eg stock prices
fall by 20% and interest rates rise by 100 bp). This concept can be generalised by
considering a set of such scenarios weighted by some probabilities that are subjective and
represent what practitioners (industry and regulators) consider as potential future
realisations. This information represents nothing else but a probability density function called
a generalised scenario.

The representation theorem states that a coherent risk measure is fully defined by a family
of generalised scenarios and vice versa. This property emphasises and favours the use of
scenarios by financial institutions to assess their risks as it allows more than the other
methods to stay compatible with the coherence of the risk measure which has be shown to
be a fundamental property.

References to articles:

o [1] Philippe Artzner, “Application of Coherent Risk Measures to Capital
Requirements in Insurance”, North American Actuarial Journal, Volume 3, Number
2, April 1999

. [2] Glenn Myers, Coherent measures of risks, an exposition for the Lay actuaries,

Casualty Actuarial Society, 2000.
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Box B — Correlations vs dependencies

Linear correlations have been quite popular in finance and business applications. The
calculation of the linear correlation coefficient (also called Pearson Product Moment
Correlation) is straight-forward, and it is easily linked to linear models that are intuitive and
readily explainable to a wide variety of users. A given correlation suffices, in a relatively
straightforward fashion, to explain the joint or combined probability distribution for two or
more normal random variables, thus preserving the general computational advantages and
intuition (and real-world weakness) of modelling with the normal distribution. This is highly
convenient both for underlying stochastic models involved in pricing and risk analysis as well
as models that may be used for top-of-the-house risk aggregation. The following table
explains correlation measures such as linear correlation in the context of the more general
concept of statistical dependence, with which it may easily be confused.

Dependence | Correlation
Independence Event A: Credit-related losses on the consumer loan portfolio will exceed
USD 150 million.

Event B: Insurance claims will exceed premiums by USD 20 million.

In statistics, A and B are independent if
Pr(A|B)=Pr(A)or, equivalently, Pr(B|A)=Pr(B)
Verbally:

“Probability of A given B is equal to the Probability of A."
“Probability of A is the same whether or not B occurs.”

Dependence Dependence means that the Correlation is a commonly used
versus correlation | probability distribution of a variable label for specific measures of
is different depending on the state of | dependence between pairs of
the other variable. variables.

If the events are dependent, whether | In qualitative discussions,

one of the events occurs should “correlation” is often not carefully
cause one to change his or her distinguished from “dependence”.
estimate of the probability that the
other occurs.

Characterisation & | Qualitatively, there are varying Correlation is a normalised measure
scaling degrees of dependence. Variables of dependence. “Correlation
that are highly dependent may have | coefficient” most often refers to
conditional distributions (eg, Pearson Product Moment
probability of A given B) that are Correlation. This is a measure of
very different from their linear relationship and is scaled from
unconditional distributions -1 to 1. Other correlation coefficients
(probability of A assuming nothing include Spearman'’s Rank
about B). Correlation & Kendall's Tau, also
scaled from -1 to 1. Independent
The degree of dependence may random variables have a correlation
vary with the value of the of zero. The closer to -1 or 1, the
conditioning (“given”) variable. If stronger the level of dependence.

extreme values for that variable are
associated with relatively high
conditional probabilities for
dependent variables, which may
signify high tail dependence.
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Limits

Dependence is described in full only
by knowing the entire joint
probability distribution — ie, the
function describing the probability of
any possible combination of
outcomes.

Correlation measures can be limited
in how they represent dependence.
A set of variables can have
important dependencies (eg, at the
tail) that are not represented clearly
by a specific measure of correlation.
Also, a given correlation might not
distinguish between two very
different joint distributions. Risk
managers hope to capture important
dependencies rather than measure
correlation well, per se.

In business and financial time series, correlation measures often prove to
be unstable. Particularly during stressful periods, correlation may appear,
after the fact, to have increased significantly, leading to greater than

anticipated losses.

It can be difficult or impossible for risk managers to obtain reliable, time-
independent measures of dependence due to potential changes in the

overall dependence structure.
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