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Abstract

In this paper, we consider a Markov-modulated risk model in which the
claim inter-arrivals, claim sizes and premiums influenced by an external
Markovian environment process. A system of Laplace transforms of non-
ruin probabilities, given the initial environment state, is established from
a system of integro-differential equations. In the two-state model, explicit
formulas for non-ruin probabilities are given when the initial reserve is zero
or when both claim size distributions are from a rational family.

Keywords: Markov-modulated processes; Semi-Markov processes; Rational dis-
tributions; Ruin theory; Non-ruin probability

1 Introduction

The theory of ruin has been the central interest for many authors. The main
objective of ruin theory is to obtain exact formulas or approximations of ruin
probabilities in various kinds risk models. In this paper we are interested in
the ruin probabilities in a Markov-modulated risk model. Models of this type
have been investigated, e.g., by Reinhard (1984), Asmussen (1989), Rolski (1989),
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Grandell (1991), Asmussen et al. (1995) and Snoussi (2002), who studies the
severity of ruin, while Bäuerle (1996) explores the expected ruin times.

Reinhard (1984) considers a class of semi-Markov risk models in which the claim
frequencies and claim amounts are influenced by an external Markovian environ-
ment process. A system of integro-differential equations for the non-ruin probabi-
lities, when the claim size distributions are exponential, is derived. In a particular
case (two possible states for the environment), the solution to this system is dis-
cussed. Some other properties related to risk theory are also considered.

More recently, Reinhard and Snoussi (2001, 2002) have discussed the severity of
ruin and the distribution of the surplus prior to ruin in a discrete semi-Markov risk
model, respectively. Wu (1999) develops generalized bounds for the probability
of ruin under a Markovian modulated risk model. Jasiulewicz (2001) considers
the probability of ruin under the influence of a premium rate which varies with
the level of free reserves, while Wu and Wei (2004) investigates the same problem
but the premium rate varies according to the intensity of claims, in a Markovian
environment.

The purpose of this paper is to obtain the explicit formulas of the probability
of ruin in a Markov-modulated model where claim intensities, claim sizes and
premiums vary according to a Markovian environment. The same problem is
studied by Reinhard (1984), however, there are two main differences between the
two papers: first, the Laplace transform approach is used to solve the system of
integro-differential equations; second, the characteristic equation is fully discussed.
By these, explicit formulas for the non-ruin probabilities in a two-state model are
given when the initial reserve is zero or when both claim size distributions are
from a rational family. Here the rational distributions include, as the special
cases, Erlang, Coxian, phase-type distributions, as well as the mixture of these
distributions.

2 Preliminaries

Let (Ω,A, P ) be a complete probability space and all the random variables defined
below are on this space. Following Reinhard (1984) and Snoussi (2002), we
introduce a Markov-modulated risk model involving in a Markovian environment
process.

Consider a risk model in continuous time. Denote by {I(t); t ≥ 0} the external
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environment process, which influences the frequency of claims, the distribution of
claims, and the rate of premiums. Suppose that {I(t); t ≥ 0} is a homogeneous,
irreducible and recurrent Markov process with finite state space I = {1, 2, . . . ,m}.
Denote by Λ = (αij), with αii := −αi, the intensity matrix of {I(t); t ≥ 0}. The
transition probability matrix of the embedded Markov chain is then given by

P = [pij] , pij =

{
0, i = j,
αij

αi
, i 6= j,

i, j ∈ I . (1)

Further assume that at time t claims occur according to a Poisson process with
constant intensity rate λi ∈ R+, when I(t) = i and the corresponding claim
amounts have distribution Fi(x), with density function fi(x) and finite mean µi

(i ∈ I). Moreover, we assume that premiums are received continuously at a
positive constant rate ci during any time interval when the environment process
remains in state i. Denote by Wn and Xn, respectively, the arrival time and the
amount of the nth claim, and by Tn = Wn − Wn−1 the inter-arrival time of the
(n − 1)st claim and the nth claim, with W0 = X0 = T0 = 0.

Let Jn = I(Wn), n ∈ N, be the state of the process I at the arrival of the nth claim.
Reinhard (1984) shows that when the Markov chain {Jn; n ∈ N} is irreducible and
aperiodic (thus ergodic as m < ∞), its unique stationary probability distribution
π = (π1, . . . , πm) is given by

πi =

λiηi

αi∑m
k=1

λkηk

αk

, i ∈ I , (2)

where η = (η1, . . . , ηm) is the unique stationary probability distribution of the
embedded Markov chain of process I, with transition probabilities given by (1).

Suppose that the sequences of random variables {Xn}n≥0 and {Tn}n≥0 are condi-
tionally independent given {I(t); t ≥ 0}.

Now define N(t) = sup{n ∈ N
∣∣ ∑m

i=1 Ti ≤ t} as the number of claims that have
occured before time t. The counting process {N(t); t ≥ 0} is called a Markov-
modulated Poisson process, which is a special case of the Cox processes. It also
can be seen as a Poisson process with parameters modified by the transitions of
an environment process. The corresponding surplus process {R(t); t ≥ 0} is then

R(t) = u + C(t)−
N(t)∑

n=1

Xn , t ≥ 0 , (3)
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where C(t) denotes the aggregate premium received during interval (0, t] and
u (≥ 0) is the initial reserve. Let Un be the time at which the nth transition of
the environment process occurs and In be the state of the environment after its
nth transition. Reinhard (1984) shows that

C(t) =

Ne(t)∑

k=1

cIk−1
(Uk − Uk−1) + cINe(t)

(t − TNe(t)) , t ≥ 0 ,

where Ne(t) = sup{n ∈ N : Un ≤ t}.

Define
T = inf

{
t > 0

∣∣ R(t) < 0
}

, (∞, otherwise) ,

to be the time of ruin and define the ultimate ruin probabilities, given that the
initial environment state is i and the initial reserve is u, by

Ψi(u) = P
{
T < ∞

∣∣ R(0) = u, I(0) = i
}

, i ∈ I , u ≥ 0 ,

and the ultimate ruin probability in the stationary case by

Ψ(u) =
m∑

k=1

πiΨi(u) , u ≥ 0 .

Their corresponding ultimate survival probabilities, or non-ruin probabilities, are
defined, for u ≥ 0, by Φi(u) = 1−Ψi(u), i ∈ I, and Φ(u) = 1−Ψ(u), respectively.

Finally, we assume that the positive loading condition satisfies [see Reinhard
(1984)], i.e.,

d =
m∑

i=1

πi

(
ci

λi
− µi

)
> 0 , (4)

where πi is given by (2).

3 Laplace transforms

Reinhard (1984) derives a system of integro-differential equations about the non-
ruin probabilities, Φi(u), for i = 1, 2, . . . ,m:

ciΦ
′
i(u) = (λi+αi)Φi(u)−λi

∫ u

0−
Φi(u−x)dFi(x)−αi

m∑

k=1

pikΦk(u) , u ≥ 0 , (5)
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which has a unique solution such that Φi(∞) = 1, for i ∈ I.

Integrating (5) from 0 to t, we have

ciΦi(t) = ciΦi(0) + λi

∫ t

0

Φi(t − y)[1− Fi(y)]dy

+αi

∫ t

0

[
Φi(u) −

m∑

k=1

pikΦk(u)
]
du , i ∈ I , t ≥ 0 , (6)

which is a system of Volterra integral equations, no longer the renewal type equa-
tions for m > 1.

Letting t goes to ∞ in (6) gives

Φi(0) = 1 − λiµi

ci
− αi

ci

∫ ∞

0

[
Φi(u)−

m∑

k=1

pikΦk(u)
]
du , i ∈ I , (7)

which does not give an explicit value for the probabilities Φi(0) as in the classical
case (m = 1).

We now apply Laplace transforms to solve the system of equations (6). Let Φ̂i

and f̂i be the Laplace transforms of Φi and fi, respectively, i.e.,

Φ̂i(s) =

∫ ∞

0

e−suΦi(u)du , f̂i(s) =

∫ ∞

0

e−sufi(u)du , i ∈ I .

Taking Laplace transforms on both sides of equation (6) yields

[
s − λi + αi

ci
+

λi

ci
f̂i(s)

]
Φ̂i(s) +

αi

ci

m∑

k=1

pikΦ̂k(s) = Φi(0) , i ∈ I

or in a matrix form
A(s)Φ̂(s) = Φ(0) , (8)

where

A(s) =




s − λ1(1−f̂1(s))+α1

c1
. . .

s − λm(1−f̂m(s))+αm

cm


 +




αi

ci

. . .
αm

cm


P ,

(9)

Φ̂(s) =
[
Φ̂1(s), . . . , Φ̂m(s)

]T

, Φ(0) = [Φ1(0), . . . ,Φm(0)]T , and P is given by (1),

with pii = 0, for i ∈ I.
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Then Φ̂(s) can be solved as Φ̂(s) = [A(s)]−1Φ(0), and

det[A(s)] = 0 , (10)

is the characteristic equation of (8).

4 The results on a two-state model

In this section, we derive explicit expressions for non-ruin probabilities. By dis-
cussing analytically the roots of equation (10), the Laplace transform of Φ̂(s) can
be inverted for certain types of claim size distributions.

Now we consider the case when m = 2, that is {I(t); t ≥ 0} is a two-state Markov
process, which reflects the random environmental effects due to “normal” vs. “ab-
normal”, or “high season” vs. “low season” conditions. The unique stationary
probability distribution πi can be obtained from (2) as

πi =
λi

αi

λ1

α1
+ λ2

α2

, i = 1, 2 ,

and the positive loading condition (4) becomes

d =

λ1

α1

(
c1
λ1

− µ1

)
+ λ2

α2

(
c2
λ2

− µ2

)

λ1

α1
+ λ2

α2

> 0 . (11)

In this case matrix (9) has the form

A(s) =

[
s − λ1+α1

c1
+ λ1

c1
f̂1(s)

α1

c1
α2

c2
s − λ2+α2

c2
+ λ2

c2
f̂2(s)

]
,

and the characteristic equation (10) is of the form

Q(s) :=

[
s − λ1 + α1

c1
+

λ1

c1
f̂1(s)

] [
s − λ2 + α2

c2
+

λ2

c2
f̂2(s)

]
=

α1α2

c1c2
. (12)

Note that s = 0 is one root of equation (12). Following theorem shows that it
also has one and only one positive root, which plays the key role in deriving the
non-ruin probabilities Φi(u).
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Theorem 1 Characteristic equation (12) has exactly one positive real root, say
ρ, on the right half complex plane.

Now equation (8) has the form
[

s − λ1+α1

c1
+ λ1

c1
f̂1(s)

α1

c1
α2

c2
s − λ2+α2

c2
+ λ2

c2
f̂2(s)

] [
Φ̂1(s)

Φ̂2(s)

]
=

[
Φ1(0)
Φ2(0)

]
,

or 



Φ̂1(s) =
Φ1(0)

[
s−λ2+α2

c2
+

λ2
c2

f̂2(s)
]
−Φ2(0)

α1
c1

Q(s)−α1α2
c1c2

Φ̂2(s) =
Φ2(0)

[
s−λ1+α1

c1
+

λ1
c1

f̂1(s)
]
−Φ1(0)

α2
c2

Q(s)−α1α2
c1c2

. (13)

Since Φ̂1(s) and Φ̂2(s) are finite for all s with <(s) ≥ 0 and Q(ρ) = α1α2

c1c2
, we have

that both the numerators in (13) are zero when s = ρ, i.e.,

Φ1(0)

[
ρ − λ2 + α2

c2
+

λ2

c2
f̂2(ρ)

]
= Φ2(0)

α1

c1
. (14)

Then (13) can be rewritten as




Φ̂1(s) =
Φ1(0)

[(
s−ρ

)
+

λ2
c2

(
f̂2(s)−f̂2(ρ)

)]

Q(s)−α1α2
c1c2

,

Φ̂2(s) =
Φ2(0)

[(
s−ρ

)
+

λ1
c1

(
f̂1(s)−f̂1(ρ)

)]

Q(s)−α1α2
c1c2

.

(15)

On the other hand, equation (7) gives

α2

c2

Φ1(0) +
α1

c1

Φ2(0) =
α1

c1

(
1 − λ2µ2

c2

)
+

α2

c2

(
1 − λ1µ1

c1

)
. (16)

Combining (14) with (16), we get

Theorem 2 For risk model given by (3), with m = 2 and d > 0, the non-ruin
probabilities when the initial reserve is zero are given by





Φ1(0) =
α1
c1

(
1−λ2µ2

c2

)
+

α2
c2

(
1−λ1µ1

c1

)

ρ−λ2
c2

[
1−f̂2(ρ)

] ,

Φ2(0) =
α1
c1

(
1−λ2µ2

c2

)
+

α2
c2

(
1−λ1µ1

c1

)

ρ−λ1
c1

[
1−f̂1(ρ)

] .

(17)
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We now consider the case where the claim size distributions f1 and f2 are from a
rational family, namely, their Laplace transformations are rational functions:

f̂1(s) =
pk−1(s)

pk(s)
, f̂2(s) =

ql−1(s)

ql(s)
, k, l ∈ N+ , (18)

where pk−1(s) and ql−1(s) are polynomials of degrees k − 1 and l − 1 or less, res-
pectively, while pk(s), ql(s) are polynomials of degrees k and l, with only negative
roots, satisfying pk−1(0) = pk(0) and ql−1(0) = ql(0). This general class of distribu-
tions includes, as special cases, the Erlang, Coxian and phase-type distributions,
as well as mixtures of these [see Cohen (1982) and Tijms (1994)].

It turns out that equations in (15) can be transformed to rational expressions by
multiplying both numerators and denominators by pk(s)ql(s):

Φ̂1(s) =
Φ1(0)(s − ρ)pk(s)

{
ql(s) + λ2

c2

(
ql−1[s, ρ] − ql−1(ρ)

ql(ρ)
ql[s, ρ]

)}

pk(s)ql(s)[Q(s)− α1α2

c1c2
]

, (19)

Φ̂2(s) =
Φ2(0)(s − ρ)ql(s)

{
pk(s) + λ1

c1

(
pk−1[s, ρ]− pk−1(ρ)

pk(ρ)
pk[s, ρ]

)}

pk(s)ql(s)[Q(s)− α1α2

c1c2
]

, (20)

where pk−1[s, ρ] :=
pk−1(s)−pk−1(ρ)

s−ρ
, a polynomial of degree k − 2, is the first order

divided difference of pk−1(s) with respect to ρ, and pk[s, ρ], ql−1[s, ρ] and ql[s, ρ]
have the similar definitions. It is clear that both numerators of (19) and (20) are
now polynomials of degree k + l + 1.

For simplicity, let Dk+l+2(s) be the common denominator of (19) and (20), which
is clearly a polynomial of degree k + l + 2 with the leading coefficient 1. Then
equation Dk+l+2(s) = 0, i.e.,

[(
s − λ1 + α1

c1

)
pk(s) +

λ1

c1
pk−1(s)

] [(
s − λ2 + α2

c2

)
ql(s) +

λ2

c2
ql−1(s)

]

− α1α2

c1c2
pk(s)ql(s) = 0

(21)

has k + l + 2 roots on the complex plane and all of them are in pairs of conjugate
forms. Note that s = 0 and s = ρ are of two roots, then

Dk+l+2(s) = s (s − ρ)
k+l∏

i=1

(s + Ri) .
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We remark that all Ri’s have a positive real parts, since, otherwise, it is also the
root of the characteristic equation, which is a contradiction to the conclusion that
there is only one root to it.

Then (19) and (20) can be simplified to




Φ̂1(s) =
Φ1(0)pk(s)

{
ql(s)+

λ2
c2

(
ql−1[s,ρ]−

ql−1(ρ)

ql(ρ)
ql[s,ρ]

)}

s
∏k+l

i=1(s+Ri)
=

Φ1(0)gk+l(s)

s
∏k+l

i=1(s+Ri)
,

Φ̂2(s) =
Φ2(0)ql(s)

{
pk(s)+

λ1
c1

(
pk−1[s,ρ]−

pk−1(ρ)

pk(ρ)
pk [s,ρ]

)}

s
∏k+l

i=1(s+Ri)
=

Φ2(0)hk+l(s)

s
∏k+l

i=1(s+Ri)
,

where

gk+l(s) = pk(s)

{
ql(s) +

λ2

c2

(
ql−1[s, ρ]− ql−1(ρ)

ql(ρ)
ql[s, ρ]

)}
,

hk+l(s) = ql(s)

{
pk(s) +

λ1

c1

(
pk−1[s, ρ]− pk−1(ρ)

pk(ρ)
pk[s, ρ]

)}
.

Then if Ri, i = 1, 2, . . . , k + l, are distinct numbers, we obtain the following
theorem.

Theorem 3 For risk models given by (3), with m = 2 and d > 0, if the claim
size distributions are of rational family (18), the non-ruin probabilities are given
by

Φ1(u) = 1 + Φ1(0)
k+l∑

i=1

gie
−Riu , Φ2(u) = 1 + Φ2(0)

k+l∑

i=1

hie
−Riu , (22)

where −R1,−R2, . . . ,−Rk+l, are distinct roots of equation (21), with negative real
parts, and Φ1(0) and Φ2(0) are given by (17), while gi, hi are of the forms

gi =
−gk+l(−Ri)

Ri

∏k+l
j=1,j 6=i(Rj − Ri)

, hi =
−hk+l(−Ri)

Ri

∏k+l
j=1,j 6=i(Rj − Ri)

, i = 1, 2, . . . , k+ l . (23)

We remark that if some of Ri’s come in pairs of complex forms, the non-ruin
probabilities may contain damped trigonometric functions.
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